{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:36:43Z","timestamp":1726263403419},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,7,1]],"date-time":"2017-07-01T00:00:00Z","timestamp":1498867200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["2013R1A1A2010842"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004085","name":"Ministry of Education, Science and Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004085","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010002","name":"Ministry of Education","doi-asserted-by":"publisher","award":["NTU-ERP-104R890861"],"id":[{"id":"10.13039\/100010002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004663","name":"Ministry of Science and Technology, Taiwan","doi-asserted-by":"publisher","award":["MOST104-2221-E-002-062-MY3"],"id":[{"id":"10.13039\/501100004663","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001321","name":"National Research Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001321","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2017,7]]},"DOI":"10.1016\/j.cmpb.2017.06.001","type":"journal-article","created":{"date-parts":[[2017,6,3]],"date-time":"2017-06-03T06:16:39Z","timestamp":1496470599000},"page":"143-150","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images"],"prefix":"10.1016","volume":"146","author":[{"given":"Woo Kyung","family":"Moon","sequence":"first","affiliation":[]},{"given":"Yan-Wei","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Yao-Sian","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Su Hyun","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Min Sun","family":"Bae","sequence":"additional","affiliation":[]},{"given":"Ann","family":"Yi","sequence":"additional","affiliation":[]},{"given":"Chiun-Sheng","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Ruey-Feng","family":"Chang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2017.06.001_bib0001","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1634\/theoncologist.9-6-606","article-title":"Prognostic and predictive factors in early-stage breast cancer","volume":"9","author":"Cianfrocca","year":"2004","journal-title":"Oncologist"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0002","doi-asserted-by":"crossref","first-page":"1551","DOI":"10.1002\/1097-0142(19831101)52:9<1551::AID-CNCR2820520902>3.0.CO;2-3","article-title":"Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update","volume":"52","author":"Fisher","year":"1983","journal-title":"Cancer"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0003","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1148\/radiol.13121606","article-title":"Breast ultrasonography: state of the art","volume":"268","author":"Hooley","year":"2013","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0004","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1590\/0100-3984.2013.1689","article-title":"Axillary lymph nodes in breast cancer patients: sonographic evaluation","volume":"47","author":"Pinheiro","year":"2014","journal-title":"Radiologia Brasileira"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0005","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1002\/cncr.29791","article-title":"Using computer\u2010extracted image phenotypes from tumors on breast magnetic resonance imaging to predict breast cancer pathologic stage","volume":"122","author":"Burnside","year":"2016","journal-title":"Cancer"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0006","doi-asserted-by":"crossref","first-page":"2979","DOI":"10.1007\/s00330-013-2930-y","article-title":"Association of tumour stiffness on sonoelastography with axillary nodal status in T1 breast carcinoma patients","volume":"23","author":"Yi","year":"2013","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0007","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.jamcollsurg.2008.10.029","article-title":"Predictive probability of four different breast cancer nomograms for nonsentinel axillary lymph node metastasis in positive sentinel node biopsy","volume":"208","author":"Gur","year":"2009","journal-title":"J. Am. Coll. Surgeons"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0008","doi-asserted-by":"crossref","first-page":"2093","DOI":"10.1200\/JCO.2007.11.9479","article-title":"Nomogram for the prediction of having four or more involved nodes for sentinel lymph node\u2013positive breast cancer","volume":"26","author":"Katz","year":"2008","journal-title":"J. Clin. Oncol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0009","article-title":"A nomogram to predict the probability of axillary lymph node metastasis in early breast cancer patients with positive axillary ultrasound","volume":"6","author":"Qiu","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0010","doi-asserted-by":"crossref","first-page":"1688","DOI":"10.1016\/j.ultrasmedbio.2007.05.016","article-title":"Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS)","volume":"33","author":"Shen","year":"2007","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0011","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/TMI.2008.928178","article-title":"Automated method for improving system performance of computer-aided diagnosis in breast ultrasound","volume":"28","author":"Drukker","year":"2009","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0012","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1148\/radiol.2533090280","article-title":"Breast US computer-aided diagnosis system: robustness across urban populations in South Korea and the United States 1","volume":"253","author":"Gruszauskas","year":"2009","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0013","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.ultrasmedbio.2011.01.006","article-title":"Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images","volume":"37","author":"Moon","year":"2011","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0014","doi-asserted-by":"crossref","first-page":"2262","DOI":"10.1109\/TMI.2013.2279938","article-title":"Robust texture analysis using multi-resolution gray-scale invariant features for breast sonographic tumor diagnosis","volume":"32","author":"Yang","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0015","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1016\/j.ultrasmedbio.2011.02.003","article-title":"Breast tumor classification using fuzzy clustering for breast elastography","volume":"37","author":"Moon","year":"2011","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0016","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1117\/1.482706","article-title":"Image lightness rescaling using sigmoidal contrast enhancement functions","volume":"8","author":"Braun","year":"1999","journal-title":"J. Electron. Imaging"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0017","series-title":"Digital Image Processing","author":"Gonzalez","year":"2008"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0018","volume":"vol. 3","author":"Sethian","year":"1999"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0019","series-title":"2007 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Optimized color sampling for robust matting","author":"Wang","year":"2007"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0020","series-title":"Proceedings of VIIP","first-page":"423","article-title":"Random walks for interactive alpha-matting","author":"Grady","year":"2005"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0021","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1038\/bjc.1984.112","article-title":"Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination","volume":"49","author":"Koscielny","year":"1984","journal-title":"Br. J. Cancer"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0022","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1097\/00000658-198111000-00006","article-title":"Axillary micro-and macrometastases in breast cancer: prognostic significance of tumor size","volume":"194","author":"Rosen","year":"1981","journal-title":"Ann. Surgery"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0023","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1038\/nrc1670","article-title":"Breast cancer metastasis: markers and models","volume":"5","author":"Weigelt","year":"2005","journal-title":"Nat. Rev. Cancer"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0024","volume":"vol. 19","author":"Howlader","year":"2011"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0025","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1111\/joim.12084","article-title":"Breast cancer as a systemic disease: a view of metastasis","volume":"274","author":"Redig","year":"2013","journal-title":"J. Internal Med."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0026","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1002\/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H","article-title":"Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases","volume":"63","author":"Carter","year":"1989","journal-title":"Cancer"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0027","doi-asserted-by":"crossref","first-page":"646","DOI":"10.2214\/AJR.07.2460","article-title":"Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer: in vitro sonographic study","volume":"191","author":"Bedi","year":"2008","journal-title":"Am. J. Roentgenol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0028","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1186\/1472-6947-12-54","article-title":"Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model","volume":"12","author":"Takada","year":"2012","journal-title":"BMC Med. Inf. Decis. Making"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0029","doi-asserted-by":"crossref","first-page":"9936","DOI":"10.3390\/s120709936","article-title":"A logistic regression model for predicting axillary lymph node metastases in early breast carcinoma patients","volume":"12","author":"Xie","year":"2012","journal-title":"Sensors"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0030","article-title":"Distinct lymph nodal sonographic characteristics in breast cancer patients at high risk for axillary metastases correlate with the final axillary stage","author":"Moore","year":"2014","journal-title":"Br. J. Radiol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0031","article-title":"Preoperative evaluation of axillary lymph nodes in malignant breast lesions with ultrasonography and histopathologic correlation","volume":"100","author":"Fidan","year":"2016","journal-title":"J. Belgian Soc. Radiol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0032","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1097\/00000478-199104000-00002","article-title":"Prognosis and breast cancer: recognition of lethal and favorable prognostic types","volume":"15","author":"Page","year":"1991","journal-title":"Am. J. Surg. Pathol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0033","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1148\/radiol.2463061463","article-title":"Axillary lymph nodes: US-guided fine-needle aspiration for initial staging of breast cancer\u2014correlation with primary tumor size 1","volume":"246","author":"Koelliker","year":"2008","journal-title":"Radiology"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0034","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.ultrasmedbio.2010.10.011","article-title":"Use of axillary ultrasound, ultrasound-fine needle aspiration biopsy and magnetic resonance imaging in the preoperative triage of breast cancer patients considered for sentinel node biopsy","volume":"37","author":"Fern\u00e1ndez","year":"2011","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0035","doi-asserted-by":"crossref","first-page":"1731","DOI":"10.2214\/AJR.09.3122","article-title":"Preoperative sonographic classification of axillary lymph nodes in patients with breast cancer: node-to-node correlation with surgical histology and sentinel node biopsy results","volume":"193","author":"Cho","year":"2009","journal-title":"Am. J. Roentgenol."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0036","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1080\/02841850410001088","article-title":"CT-based evaluation of axillary sentinel lymph node status in breast cancer: value of added contrast-enhanced study","volume":"45","author":"Yuen","year":"2004","journal-title":"Acta Radiologica"},{"key":"10.1016\/j.cmpb.2017.06.001_bib0037","article-title":"Determination of metastatic axillary lymph node in breast cancer: differentiation with dynamic MRI examination by signal intensity-time curves","volume":"2011","author":"Duzgun","year":"2011","journal-title":"J. Cancer Ther."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0038","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1620\/tjem.231.211","article-title":"Non-invasive evaluation of axillary lymph node status in breast cancer patients using shear wave elastography","volume":"231","author":"Tamaki","year":"2013","journal-title":"Tohoku J. Exp. Med."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0039","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.1242\/jcs.072900","article-title":"Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial\u2013mesenchymal transition-like state in breast cancer cells in vitro","volume":"123","author":"Gao","year":"2010","journal-title":"J. Cell Sci."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0040","first-page":"26","article-title":"Brain tumor analysis of rician noise affected MRI images","volume":"141","author":"K. V. S. Renukalatha","year":"2016","journal-title":"Int. J. Comput. Appl."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0041","doi-asserted-by":"crossref","first-page":"1530","DOI":"10.1016\/j.compbiomed.2013.07.027","article-title":"Unsupervised tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting","volume":"43","author":"Zeng","year":"2013","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cmpb.2017.06.001_bib0042","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s10549-013-2747-z","article-title":"Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?","volume":"143","author":"Evans","year":"2014","journal-title":"Breast Cancer Res. Treat."}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260716313281?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260716313281?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,19]],"date-time":"2022-06-19T17:33:03Z","timestamp":1655659983000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260716313281"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7]]},"references-count":42,"alternative-id":["S0169260716313281"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2017.06.001","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2017,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2017.06.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}