{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T18:16:07Z","timestamp":1722968167555},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,5,1]],"date-time":"2017-05-01T00:00:00Z","timestamp":1493596800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["cmpbjournal.com","clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods and Programs in Biomedicine"],"published-print":{"date-parts":[[2017,5]]},"DOI":"10.1016\/j.cmpb.2017.03.006","type":"journal-article","created":{"date-parts":[[2017,3,5]],"date-time":"2017-03-05T02:33:43Z","timestamp":1488681223000},"page":"89-95","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":37,"special_numbering":"C","title":["A novel method and software for automatically classifying Alzheimer\u2019s disease patients by magnetic resonance imaging analysis"],"prefix":"10.1016","volume":"143","author":[{"given":"F.","family":"Previtali","sequence":"first","affiliation":[]},{"given":"P.","family":"Bertolazzi","sequence":"additional","affiliation":[]},{"given":"G.","family":"Felici","sequence":"additional","affiliation":[]},{"given":"E.","family":"Weitschek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cmpb.2017.03.006_bib0001","doi-asserted-by":"crossref","DOI":"10.1002\/hbm.23147","article-title":"Combining multiple anatomical MRI measures improves Alzheimer\u2019s disease classification","author":"de Vos","year":"2016","journal-title":"Hum. Brain Mapp."},{"issue":"10","key":"10.1016\/j.cmpb.2017.03.006_bib0002","doi-asserted-by":"crossref","first-page":"e25446","DOI":"10.1371\/journal.pone.0025446","article-title":"Multi-method analysis of MRI images in early diagnostics of Alzheimer\u2019s disease","volume":"6","author":"Wolz","year":"2011","journal-title":"PLoS ONE"},{"issue":"4","key":"10.1016\/j.cmpb.2017.03.006_bib0003","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1159\/000057698","article-title":"Postmortem MRI and histopathology of white matter changes in Alzheimer brains","volume":"13","author":"Bronge","year":"2002","journal-title":"Dement. Geriatr. Cogn. Disord."},{"issue":"11","key":"10.1016\/j.cmpb.2017.03.006_bib0004","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1212\/01.wnl.0000256697.20968.d7","article-title":"Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease","volume":"68","author":"Devanand","year":"2007","journal-title":"Neurology"},{"issue":"6","key":"10.1016\/j.cmpb.2017.03.006_bib0005","doi-asserted-by":"crossref","first-page":"1318","DOI":"10.1161\/01.STR.32.6.1318","article-title":"A new rating scale for age-related white matter changes applicable to MRI and CT","volume":"32","author":"Wahlund","year":"2001","journal-title":"Stroke"},{"issue":"4","key":"10.1016\/j.cmpb.2017.03.006_bib0006","doi-asserted-by":"crossref","first-page":"a006213","DOI":"10.1101\/cshperspect.a006213","article-title":"Brain imaging in Alzheimer disease","volume":"2","author":"Johnson","year":"2012","journal-title":"Cold Spring Harb. Perspect. Med."},{"issue":"1","key":"10.1016\/j.cmpb.2017.03.006_bib0007","first-page":"74","article-title":"A robust computational solution for automated quantification of a specific binding ratio based on [123I]FP-CIT SPECT images","volume":"58","author":"Oliveira","year":"2014","journal-title":"Q. J. Nuclear Med. Mol. Imaging"},{"issue":"1","key":"10.1016\/j.cmpb.2017.03.006_bib0008","first-page":"1","article-title":"A method to differentiate mild cognitive impairment and Alzheimer in MR images using eigen value descriptors","volume":"40","author":"Anandh","year":"2016","journal-title":"Med. Syst."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0009","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.eswa.2016.04.029","article-title":"Laplace Beltrami eigen value based classification of normal and Alzheimer MR images using parametric and non-parametric classifiers","volume":"59","author":"Ramaniharan","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0010","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.neuroimage.2014.03.036","article-title":"Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO","volume":"94","author":"Guerrero","year":"2014","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.cmpb.2017.03.006_bib0011","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.mri.2015.11.009","article-title":"Feature-ranking-based Alzheimer\u2019s disease classification from structural MRI","volume":"34","author":"Beheshti","year":"2016","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0012","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.cmpb.2016.05.009","article-title":"Extraction of sulcal medial surface and classification of Alzheimer\u2019s disease using sulcal features","volume":"133","author":"Plocharski","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"issue":"8","key":"10.1016\/j.cmpb.2017.03.006_bib0013","first-page":"2245","article-title":"An optimal decisional space for the classification of Alzheimer\u2019s disease and mild cognitive impairment","volume":"61","author":"Zhou","year":"2014","journal-title":"Biomed. Eng."},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0014","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1016\/j.ejor.2015.09.051","article-title":"Integer programming models for feature selection: new extensions and a randomized solution algorithm","volume":"250","author":"Bertolazzi","year":"2016","journal-title":"Eur. J. Oper. Res."},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0015","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1007\/s10916-011-9738-6","article-title":"Automated diagnosis of Alzheimer disease using the scale-invariant feature transforms in magnetic resonance images","volume":"36","author":"Daliri","year":"2012","journal-title":"Med. Syst."},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0016","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Comput. Vis."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0017","series-title":"International Conference on Imaging Theory and Applications","first-page":"135","article-title":"A review on the current segmentation algorithms for medical images.","author":"Ma","year":"2009"},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0018","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1080\/10255840903131878","article-title":"A review of algorithms for medical image segmentation and their applications to the female pelvic cavity","volume":"13","author":"Ma","year":"2010","journal-title":"Comput. Methods Biomech. Biomed. Eng."},{"issue":"11","key":"10.1016\/j.cmpb.2017.03.006_bib0019","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1007\/s10916-015-0354-8","article-title":"A review of the quantification and classification of pigmented skin lesions: from dedicated to hand-held devices","volume":"39","author":"Filho","year":"2015","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0020","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.cmpb.2016.03.032","article-title":"Computational methods for the image segmentation of pigmented skin lesions: a review","volume":"131","author":"Oliveira","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0021","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eswa.2015.10.016","article-title":"A review of computational methods applied for identification and quantification of atherosclerotic plaques in images","volume":"46","author":"Jodas","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0022","series-title":"International Symposium on Visual Computing","first-page":"21","article-title":"Analysis of biomedical images based on automated methods of image registration","author":"Tavares","year":"2014"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0023","series-title":"Computational and Experimental Biomedical Sciences: Methods and Applications","first-page":"173","article-title":"Computer image registration techniques applied to nuclear medicine images","author":"Alves","year":"2015"},{"key":"10.1016\/j.cmpb.2017.03.006_sbref0024","series-title":"International Conference on Advances and Trends in Engineering Materials and their Applications","article-title":"Image processing and analysis: applications and trends","author":"Tavares","year":"2010"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0025","series-title":"International Conference on Computer Vision","first-page":"2564","article-title":"ORB: an efficient alternative to SIFT or SURF","author":"Rublee","year":"2011"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0026","series-title":"Alvey Vision Conference","first-page":"50","article-title":"A combined corner and edge detector","volume":"15","author":"Harris","year":"1988"},{"issue":"3","key":"10.1016\/j.cmpb.2017.03.006_bib0027","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/S0262-8856(96)01127-4","article-title":"On 3D differential operators for detecting point landmarks","volume":"15","author":"Rohr","year":"1997","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0028","series-title":"Pattern Classification","author":"Duda","year":"2012"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0029","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.patrec.2013.12.018","article-title":"A path-and label-cost propagation approach to speedup the training of the optimum-path forest classifier","volume":"40","author":"Iwashita","year":"2014","journal-title":"Pattern Recognit. Lett."},{"issue":"5","key":"10.1016\/j.cmpb.2017.03.006_bib0030","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1093\/bioinformatics\/btv635","article-title":"CAMUR: knowledge extraction from RNA-seq cancer data through equivalent classification rules","volume":"32","author":"Cestarelli","year":"2016","journal-title":"Bioinformatics"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0031","series-title":"Foundations of Machine Learning","author":"Mohri","year":"2012"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0032","series-title":"International Workshop on Database and Expert Systems Applications","first-page":"201","article-title":"MALA: a microarray clustering and classification software","author":"Weitschek","year":"2012"},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0033","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1023\/A:1009715923555","article-title":"A tutorial on support vector machines for pattern recognition","volume":"2","author":"Burges","year":"1998","journal-title":"Data Min. Knowl. Discov."},{"issue":"2","key":"10.1016\/j.cmpb.2017.03.006_bib0034","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1109\/72.991427","article-title":"A comparison of methods for multiclass support vector machines","volume":"13","author":"Hsu","year":"2002","journal-title":"Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.cmpb.2017.03.006_bib0035","first-page":"27","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"Intell. Syst. Technol."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0036","unstructured":"HelpGuide.org, Trusted Guide to Mental, Emotional & Social Health, http:\/\/www.helpguide.org\/harvard\/recognizing-and-diagnosing-alzheimers.htm."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0037","series-title":"Introduction to Data mining","author":"Tan","year":"2005"},{"issue":"3","key":"10.1016\/j.cmpb.2017.03.006_bib0038","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1016\/j.neuroimage.2006.01.021","article-title":"An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest","volume":"31","author":"Desikan","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.cmpb.2017.03.006_bib0039","first-page":"1","article-title":"DPCG: an efficient density peaks clustering algorithm based on grid","author":"Xu","year":"2016","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0040","unstructured":"M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, Tensorflow: large-scale machine learning on heterogeneous distributed systems, arXiv (2016)."},{"key":"10.1016\/j.cmpb.2017.03.006_bib0041","series-title":"International Conference on Computational Linguistics","first-page":"2335","article-title":"Relation classification via convolutional deep neural network","author":"Zeng","year":"2014"}],"container-title":["Computer Methods and Programs in Biomedicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260716307751?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169260716307751?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T17:22:13Z","timestamp":1535995333000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169260716307751"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,5]]},"references-count":41,"alternative-id":["S0169260716307751"],"URL":"https:\/\/doi.org\/10.1016\/j.cmpb.2017.03.006","relation":{},"ISSN":["0169-2607"],"issn-type":[{"value":"0169-2607","type":"print"}],"subject":[],"published":{"date-parts":[[2017,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel method and software for automatically classifying Alzheimer\u2019s disease patients by magnetic resonance imaging analysis","name":"articletitle","label":"Article Title"},{"value":"Computer Methods and Programs in Biomedicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cmpb.2017.03.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}