{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T14:45:29Z","timestamp":1724856329377},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Industrial Engineering"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.cie.2024.110325","type":"journal-article","created":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T05:13:27Z","timestamp":1719033207000},"page":"110325","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective"],"prefix":"10.1016","volume":"193","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-5347-1937","authenticated-orcid":false,"given":"Zhangjie","family":"Rui","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7544-1802","authenticated-orcid":false,"given":"Xi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Mingzhou","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Ling","sequence":"additional","affiliation":[]},{"given":"Xiaoqiao","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6298-7988","authenticated-orcid":false,"given":"Conghu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Mengyuan","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cie.2024.110325_b1","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.jmsy.2019.12.003","article-title":"A metric-based framework for sustainable production scheduling","volume":"54","author":"Abedini","year":"2020","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.cie.2024.110325_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2023.120794","article-title":"An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs","volume":"336","author":"An","year":"2023","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107810","article-title":"Mid-term energy cost-oriented flow shop scheduling: Integration of electricity price forecasts, modeling, and solution procedures","volume":"163","author":"Busse","year":"2022","journal-title":"Computers & Industrial Engineering"},{"year":"2023","series-title":"Data of electricity consumption (jan to dec 2022)","author":"CEC","key":"10.1016\/j.cie.2024.110325_b4"},{"key":"10.1016\/j.cie.2024.110325_b5","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1016\/j.cie.2017.04.026","article-title":"Bi-criteria single-machine batch scheduling with machine on\/off switching under time-of-use tariffs","volume":"112","author":"Cheng","year":"2017","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2024.110325_b6","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1016\/j.procs.2021.01.329","article-title":"Thirty years of flexible job-shop scheduling: a bibliometric study","volume":"180","author":"Coelho","year":"2021","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.cie.2024.110325_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106942","article-title":"Energy-aware operations management for flow shops under tou electricity tariff","volume":"151","author":"Cui","year":"2021","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2024.110325_b8","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1016\/j.jclepro.2018.08.270","article-title":"Industrial power load scheduling considering demand response","volume":"204","author":"Cui","year":"2018","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2024.110325_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108146","article-title":"Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system","volume":"169","author":"Dong","year":"2022","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2024.110325_b10","article-title":"Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem","author":"Du","year":"2022","journal-title":"IEEE Transactions on Emerging Topics in Computational Intelligence"},{"year":"2023","series-title":"Short-term energy outlook","author":"EIA","key":"10.1016\/j.cie.2024.110325_b11"},{"key":"10.1016\/j.cie.2024.110325_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.rser.2021.111963","article-title":"Demand-side management in industrial sector: A review of heavy industries","volume":"156","author":"Golmohamadi","year":"2022","journal-title":"Renewable and Sustainable Energy Reviews"},{"key":"10.1016\/j.cie.2024.110325_b13","doi-asserted-by":"crossref","first-page":"1387","DOI":"10.1109\/TIE.2019.2899562","article-title":"Robust self-scheduling of operational processes for industrial demand response aggregators","volume":"67","author":"Golmohamadi","year":"2019","journal-title":"IEEE Transactions on Industrial Electronics"},{"key":"10.1016\/j.cie.2024.110325_b14","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.jclepro.2018.10.289","article-title":"Energy-and labor-aware flexible job shop scheduling under dynamic electricity pricing: A many-objective optimization investigation","volume":"209","author":"Gong","year":"2019","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2024.110325_b15","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1109\/TII.2018.2839645","article-title":"Energy-and labor-aware production scheduling for industrial demand response using adaptive multiobjective memetic algorithm","volume":"15","author":"Gong","year":"2018","journal-title":"IEEE Transactions on Industrial Informatics"},{"year":"2018","series-title":"Stable baselines","author":"Hill","key":"10.1016\/j.cie.2024.110325_b16"},{"key":"10.1016\/j.cie.2024.110325_b17","doi-asserted-by":"crossref","first-page":"1041","DOI":"10.1080\/00207543.2020.1715504","article-title":"Electricity cost minimisation for optimal makespan solution in flow shop scheduling under time-of-use tariffs","volume":"59","author":"Ho","year":"2021","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2024.110325_b18","doi-asserted-by":"crossref","first-page":"82194","DOI":"10.1109\/ACCESS.2019.2924030","article-title":"Demand response management for industrial facilities: A deep reinforcement learning approach","volume":"7","author":"Huang","year":"2019","journal-title":"IEEE Access"},{"year":"2022","series-title":"World energy outlook 2022","author":"IEA","key":"10.1016\/j.cie.2024.110325_b19"},{"year":"2022","series-title":"World energy transitions outlook 2022: 1.5\u00b0c pathway","author":"IRENA","key":"10.1016\/j.cie.2024.110325_b20"},{"key":"10.1016\/j.cie.2024.110325_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2022.120140","article-title":"Deep reinforcement learning-based strategy for charging station participating in demand response","volume":"328","author":"Jin","year":"2022","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b22","doi-asserted-by":"crossref","first-page":"951","DOI":"10.1016\/j.apenergy.2017.12.127","article-title":"An milp framework for optimizing demand response operation of air separation units","volume":"222","author":"Kelley","year":"2018","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117796","article-title":"A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem","volume":"205","author":"Lei","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.cie.2024.110325_b24","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1109\/TIE.2016.2599479","article-title":"Real-time demand bidding for energy management in discrete manufacturing facilities","volume":"64","author":"Li","year":"2016","journal-title":"IEEE Transactions on Industrial Electronics"},{"key":"10.1016\/j.cie.2024.110325_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2020.116291","article-title":"Data-driven real-time price-based demand response for industrial facilities energy management","volume":"283","author":"Lu","year":"2021","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2020.115473","article-title":"Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management","volume":"276","author":"Lu","year":"2020","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b27","doi-asserted-by":"crossref","first-page":"5937","DOI":"10.1080\/00207543.2021.1975057","article-title":"Multi-resource constrained dynamic workshop scheduling based on proximal policy optimisation","volume":"60","author":"Luo","year":"2022","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2024.110325_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2019.114125","article-title":"Scheduling chemical processes for frequency regulation","volume":"260","author":"Otashu","year":"2020","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b29","doi-asserted-by":"crossref","first-page":"4434","DOI":"10.1080\/00207543.2021.2002963","article-title":"End-to-end on-line rescheduling from gantt chart images using deep reinforcement learning","volume":"60","author":"Palombarini","year":"2022","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2024.110325_b30","doi-asserted-by":"crossref","first-page":"3360","DOI":"10.1080\/00207543.2020.1870013","article-title":"Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning","volume":"59","author":"Park","year":"2021","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2024.110325_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijpe.2022.108507","article-title":"Energy-aware flexible job shop scheduling under time-of-use pricing","volume":"248","author":"Park","year":"2022","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2024.110325_b32","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1109\/TASE.2020.2995078","article-title":"An approximation algorithm for unrelated parallel machine scheduling under tou electricity tariffs","volume":"18","author":"Pei","year":"2020","journal-title":"IEEE Transactions on Automation Science and Engineering"},{"key":"10.1016\/j.cie.2024.110325_b33","doi-asserted-by":"crossref","first-page":"5746","DOI":"10.1080\/00207543.2021.1969048","article-title":"Stochastic programming approaches for an energy-aware lot-sizing and sequencing problem with incentive","volume":"60","author":"Perraudat","year":"2022","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2024.110325_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2020.115431","article-title":"Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves","volume":"278","author":"Richstein","year":"2020","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b35","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.cie.2018.12.020","article-title":"An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling","volume":"127","author":"Rubaiee","year":"2019","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2024.110325_b36","article-title":"Demand response application in industrial scenarios: A systematic mapping of practical implementation","author":"dos Santos","year":"2022","journal-title":"Expert Systems with Applications"},{"year":"2017","series-title":"Proximal policy optimization algorithms","author":"Schulman","key":"10.1016\/j.cie.2024.110325_b37"},{"key":"10.1016\/j.cie.2024.110325_b38","doi-asserted-by":"crossref","first-page":"1600","DOI":"10.1109\/TII.2022.3189725","article-title":"Flexible job-shop scheduling via graph neural network and deep reinforcement learning","volume":"19","author":"Song","year":"2022","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.cie.2024.110325_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110596","article-title":"Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem","author":"Su","year":"2023","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.cie.2024.110325_b40","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1080\/03155986.2023.2287996","article-title":"Real-time production scheduling using a deep reinforcement learning-based multi-agent approach","volume":"62","author":"Taghipour","year":"2024","journal-title":"INFOR. Information Systems and Operational Research"},{"key":"10.1016\/j.cie.2024.110325_b41","first-page":"10","article-title":"Graph attention networks","volume":"1050","author":"Velickovic","year":"2017","journal-title":"Stat"},{"key":"10.1016\/j.cie.2024.110325_b42","doi-asserted-by":"crossref","first-page":"3432","DOI":"10.1109\/TII.2018.2875866","article-title":"Intelligent demand response for industrial energy management considering thermostatically controlled loads and evs","volume":"15","author":"Wang","year":"2018","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.cie.2024.110325_b43","article-title":"Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices","volume":"204","author":"Wang","year":"2020","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.cie.2024.110325_b44","series-title":"2022 IEEE international conference on cyborg and bionic systems","first-page":"402","article-title":"Demand response optimization of cement manufacturing industry based on reinforcement learning algorithm","author":"Ye","year":"2023"},{"key":"10.1016\/j.cie.2024.110325_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2023.121324","article-title":"Explainable multi-agent deep reinforcement learning for real-time demand response towards sustainable manufacturing","volume":"347","author":"Yun","year":"2023","journal-title":"Applied Energy"},{"key":"10.1016\/j.cie.2024.110325_b46","doi-asserted-by":"crossref","first-page":"951","DOI":"10.1109\/TPWRS.2017.2704524","article-title":"Demand response of ancillary service from industrial loads coordinated with energy storage","volume":"33","author":"Zhang","year":"2017","journal-title":"IEEE Transactions on Power Systems"},{"key":"10.1016\/j.cie.2024.110325_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2024.109917","article-title":"Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-agv","volume":"189","author":"Zhang","year":"2024","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2024.110325_b48","first-page":"1621","article-title":"Learning to dispatch for job shop scheduling via deep reinforcement learning","volume":"33","author":"Zhang","year":"2020","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.cie.2024.110325_b49","doi-asserted-by":"crossref","unstructured":"Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 793\u2013803).","DOI":"10.1145\/3292500.3330961"}],"container-title":["Computers & Industrial Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835224004467?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835224004467?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T10:07:30Z","timestamp":1724148450000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0360835224004467"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":49,"alternative-id":["S0360835224004467"],"URL":"https:\/\/doi.org\/10.1016\/j.cie.2024.110325","relation":{},"ISSN":["0360-8352"],"issn-type":[{"type":"print","value":"0360-8352"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective","name":"articletitle","label":"Article Title"},{"value":"Computers & Industrial Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cie.2024.110325","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"110325"}}