{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T19:33:30Z","timestamp":1744313610076},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Industrial Engineering"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.cie.2023.109719","type":"journal-article","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T08:43:38Z","timestamp":1699087418000},"page":"109719","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["A new approach to probabilistic classification based on Gaussian process and support vector machine"],"prefix":"10.1016","volume":"186","author":[{"given":"Tanvir Ibna","family":"Kaisar","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3524-4131","authenticated-orcid":false,"given":"Kais","family":"Zaman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4302-6943","authenticated-orcid":false,"given":"Mohammad T.","family":"Khasawneh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cie.2023.109719_b0005","series-title":"Semi-supervised and unsupervised machine learning","author":"Albalate","year":"2013"},{"issue":"10","key":"10.1016\/j.cie.2023.109719_b0010","first-page":"203","article-title":"Support vector regression","volume":"11","author":"Basak","year":"2007","journal-title":"Neural Information Processing-Letters and Reviews"},{"issue":"1","key":"10.1016\/j.cie.2023.109719_b0015","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1109\/TGRS.2009.2023983","article-title":"Gaussian process approach to remote sensing image classification","volume":"48","author":"Bazi","year":"2010","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"8","key":"10.1016\/j.cie.2023.109719_b0020","doi-asserted-by":"crossref","first-page":"3729","DOI":"10.1007\/s00500-022-06787-5","article-title":"Reduction of training data for support vector machine: A survey","volume":"26","author":"Birzhandi","year":"2022","journal-title":"Soft Computing"},{"issue":"12","key":"10.1016\/j.cie.2023.109719_b0030","doi-asserted-by":"crossref","first-page":"327","DOI":"10.3390\/a13120327","article-title":"Feasibility of Kd-trees in gaussian process regression to partition test points in high resolution input space","volume":"13","author":"Boi","year":"2020","journal-title":"Algorithms"},{"key":"10.1016\/j.cie.2023.109719_b0035","doi-asserted-by":"crossref","unstructured":"Boser, E., Guyon, I. M., and Vapnik, N. (1992). A Training Algorithm Margin for Optimal Classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, 144-152, July 1, 1992, Pittsburgh, ACM.","DOI":"10.1145\/130385.130401"},{"key":"10.1016\/j.cie.2023.109719_b0040","first-page":"301","article-title":"Support vector machine solvers","volume":"3","author":"Bottou","year":"2007"},{"issue":"2","key":"10.1016\/j.cie.2023.109719_b0045","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1023\/A:1009715923555","article-title":"A Tutorial on Support Vector Machines for Pattern Recognition","volume":"2","author":"Burges","year":"1998","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.cie.2023.109719_b0050","doi-asserted-by":"crossref","unstructured":"Byun, H., and Lee, S.-W. (2002). Applications of Support Vector Machines for Pattern Recognition: A Survey. In International Workshop on Support Vector Machines, 213-236, Aug 10, 2002, Springer, Berlin, Heidelberg.","DOI":"10.1007\/3-540-45665-1_17"},{"key":"10.1016\/j.cie.2023.109719_b0055","unstructured":"Cao, Y., Brubaker, M. A., Fleet, D. J., and Hertzmann, A. (2013). Efficient optimization for sparse Gaussian process regression. In Proceedings of the 26th Advances in Neural Information Processing Systems, 1097-1105, Dec 5, 2013, Lake Tahoe, Nevada, USA."},{"key":"10.1016\/j.cie.2023.109719_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2019.106024","article-title":"A systematic literature review of machine learning methods applied to predictive maintenance","volume":"137","author":"Carvalho","year":"2019","journal-title":"Computers & Industrial Engineering"},{"issue":"3","key":"10.1016\/j.cie.2023.109719_b0065","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A Library for Support Vector Machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"issue":"6","key":"10.1016\/j.cie.2023.109719_b0070","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1109\/TNN.2009.2014161","article-title":"Probabilistic classification vector machines","volume":"20","author":"Chen","year":"2009","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"2","key":"10.1016\/j.cie.2023.109719_b0075","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1109\/TNNLS.2013.2275077","article-title":"Efficient probabilistic classification vector machine with incremental basis function selection","volume":"25","author":"Chen","year":"2013","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.cie.2023.109719_b0080","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108265","article-title":"Internet of Things resource monitoring through proactive fault prediction","volume":"169","author":"Chowdhury","year":"2022","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2023.109719_b0085","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-Vector Networks","volume":"297","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/j.cie.2023.109719_b0090","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.bdr.2018.06.002","article-title":"Fast Gaussian Process Regression for Big Data","volume":"14","author":"Das","year":"2018","journal-title":"Big Data Research"},{"key":"10.1016\/j.cie.2023.109719_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107492","article-title":"An operating performance assessment strategy with multiple modes based on least squares support vector machines for drilling process","volume":"159","author":"Fan","year":"2021","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2023.109719_b0100","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.patrec.2021.12.017","article-title":"Anomaly detection in streaming data with gaussian process based stochastic differential equations","volume":"153","author":"Glyn-Davies","year":"2022","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.cie.2023.109719_b0105","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.neucom.2020.10.043","article-title":"Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting","volume":"426","author":"Guan","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cie.2023.109719_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114478","article-title":"Sparse Gaussian process for online seagrass semantic mapping","volume":"170","author":"Guerrero-Font","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.cie.2023.109719_b0115","first-page":"5","article-title":"Support Vector Machines for Classification and Regression","volume":"14","author":"Gunn","year":"1998","journal-title":"ISIS Technical Report"},{"issue":"4","key":"10.1016\/j.cie.2023.109719_b0120","doi-asserted-by":"crossref","first-page":"2084","DOI":"10.1109\/TSMC.2020.3044418","article-title":"Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network","volume":"52","author":"Guo","year":"2021","journal-title":"IEEE transactions on systems, man, and cybernetics: systems"},{"key":"10.1016\/j.cie.2023.109719_b0125","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.patrec.2014.08.003","article-title":"Fast data selection for SVM training using ensemble margin","volume":"51","author":"Guo","year":"2014","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.cie.2023.109719_b0130","unstructured":"Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 282-290, Aug 11-15, 2013, Bellevue, WA, USA."},{"key":"10.1016\/j.cie.2023.109719_b0135","series-title":"Society for Industrial and Applied Mathematics, May 5\u20137, 2016","article-title":"Linear and Kernel Classification: When to Use Which? In Proceedings of the 2016 SIAM International Conference on Data Mining, 216\u2013224","author":"Huang","year":"2016"},{"key":"10.1016\/j.cie.2023.109719_b0140","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1088\/1475-7516\/2020\/04\/053","article-title":"Gaussian process estimation of transition redshift","volume":"04","author":"Jesus","year":"2020","journal-title":"Journal of Cosmology and Astroparticle Physics"},{"key":"10.1016\/j.cie.2023.109719_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106773","article-title":"Machine learning applications in production lines: A systematic literature review","volume":"149","author":"Kang","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2023.109719_b0150","doi-asserted-by":"crossref","unstructured":"Kapoor, A., Grauman, K., Urtasun, R., and Darrell, T. (2007). Active Learning with Gaussian Processes for Object Categorization. In IEEE 11th International Conference on Computer Vision, 1-8, October 14-20, 2007, Rio de Janeiro, Brazil.","DOI":"10.1109\/ICCV.2007.4408844"},{"issue":"3","key":"10.1016\/j.cie.2023.109719_b0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00138-020-01069-2","article-title":"Deep convolutional neural networks with transfer learning for automated brain image classification","volume":"31","author":"Kaur","year":"2020","journal-title":"Machine Vision and Applications"},{"key":"10.1016\/j.cie.2023.109719_b0160","first-page":"1679","article-title":"Assessing Approximate Inference for Binary Gaussian Process Classification","volume":"6","author":"Kuss","year":"2005","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.cie.2023.109719_b0165","unstructured":"Kuss, M., and Rasmussen, C. E. (2005b). Assessing Approximations for Gaussian Process Classification. In Proceedings of the 18th Advances in Neural Information Processing Systems, 699-706, Dec 5-8, 2005, Vancouver, British Columbia, Canada."},{"issue":"2","key":"10.1016\/j.cie.2023.109719_b0170","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.cie.2010.11.004","article-title":"Web-based algorithm for cylindricity evaluation using support vector machine learning","volume":"60","author":"Lee","year":"2011","journal-title":"Computers & Industrial Engineering"},{"issue":"3","key":"10.1016\/j.cie.2023.109719_b0175","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.1016\/j.cie.2008.09.018","article-title":"Applying wavelets transform and support vector machine for copper clad laminate defects classification","volume":"56","author":"Li","year":"2009","journal-title":"Computers & Industrial Engineering"},{"issue":"4","key":"10.1016\/j.cie.2023.109719_b0180","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1016\/j.cie.2011.06.025","article-title":"Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach","volume":"61","author":"Lin","year":"2011","journal-title":"Computers & Industrial Engineering"},{"issue":"1","key":"10.1016\/j.cie.2023.109719_b0185","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.patcog.2012.07.016","article-title":"Probabilistic classifiers with a generalized Gaussian scale mixture prior","volume":"46","author":"Liu","year":"2013","journal-title":"Pattern recognition"},{"issue":"4","key":"10.1016\/j.cie.2023.109719_b0190","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1007\/s41066-017-0049-2","article-title":"Semi-random partitioning of data into training and test sets in granular computing context","volume":"2","author":"Liu","year":"2017","journal-title":"Granular Computing"},{"issue":"1","key":"10.1016\/j.cie.2023.109719_b0195","first-page":"3906","article-title":"Multiclass Probabilistic Classification Vector Machine","volume":"31","author":"Lyu","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.cie.2023.109719_b0200","series-title":"Foundations of Machine Learning","author":"Mohri","year":"2018"},{"key":"10.1016\/j.cie.2023.109719_b0205","doi-asserted-by":"crossref","first-page":"8043","DOI":"10.1007\/s10462-022-10359-2","article-title":"A survey on multi-objective hyperparameter optimization algorithms for machine learning","volume":"56","author":"Morales-Hern\u00e1ndez","year":"2023","journal-title":"Artif Intell Rev"},{"issue":"5","key":"10.1016\/j.cie.2023.109719_b0210","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1007\/s10994-021-06101-8","article-title":"Nested aggregation of experts using inducing points for approximated Gaussian process regression","volume":"111","author":"Nakai-Kasai","year":"2022","journal-title":"Machine Learning"},{"key":"10.1016\/j.cie.2023.109719_b0215","first-page":"2035","article-title":"Approximations for Binary Gaussian Process Classification","volume":"9","author":"Nickisch","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.cie.2023.109719_b0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114079","article-title":"Bayesian neural networks for uncertainty quantification in data-driven materials modeling","volume":"386","author":"Olivier","year":"2021","journal-title":"Computer Methods in Applied Mechanics and Engineering"},{"key":"10.1016\/j.cie.2023.109719_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.petrol.2020.108182","article-title":"Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models","volume":"200","author":"Otchere","year":"2021","journal-title":"Journal of Petroleum Science and Engineering"},{"issue":"3","key":"10.1016\/j.cie.2023.109719_b0230","first-page":"61","article-title":"Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods","volume":"10","author":"Platt","year":"1999","journal-title":"Advances in large margin classifiers"},{"key":"10.1016\/j.cie.2023.109719_b0235","series-title":"Summer school on machine learning","article-title":"Gaussian processes in machine learning","author":"Rasmussen","year":"2003"},{"key":"10.1016\/j.cie.2023.109719_b0240","unstructured":"Rasmussen, C. E., and Nickisch, H. (2011). The GPML Toolbox version 4.2."},{"key":"10.1016\/j.cie.2023.109719_b0245","series-title":"Gaussian Processes for Machine Learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.cie.2023.109719_b0250","article-title":"SVM kernels for time series analysis","volume":"43","author":"R\u00fcping","year":"2001","journal-title":"Technical report"},{"issue":"2","key":"10.1016\/j.cie.2023.109719_b0255","first-page":"5328","article-title":"Kernel Methods and Support Vector Machines","volume":"8","author":"Scholkopf","year":"2003","journal-title":"Encyclopedia of Biostatistics"},{"issue":"2","key":"10.1016\/j.cie.2023.109719_b0260","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1142\/S0129065704001899","article-title":"Gaussian Processes for Machine Learning","volume":"14","author":"Seeger","year":"2004","journal-title":"International Journal of Neural Systems"},{"issue":"3","key":"10.1016\/j.cie.2023.109719_b0265","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Statistics and Computing"},{"key":"10.1016\/j.cie.2023.109719_b0270","unstructured":"Smola, A. J., and Bartlett, P. L. (2001). Sparse greedy Gaussian process regression. In Proceedings of the 13th Advances in neural information processing systems, 619-625, Dec 3-8, 2001, Vancouver, British Columbia, Canada."},{"key":"10.1016\/j.cie.2023.109719_b0280","unstructured":"Tipping, M. E. (2000). The relevance vector machine. In Proceedings of the 12th Advances in Neural Information Processing Systems, 652-658, Nov 29-Dec 4, 1999, Denver, Colorado, USA."},{"key":"10.1016\/j.cie.2023.109719_b0275","first-page":"1259","article-title":"Sparse Gaussian Processes using Pseudo-inputs","volume":"18","author":"Snelson","year":"2006","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.cie.2023.109719_b0285","first-page":"211","article-title":"Sparse Bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"Journal of machine learning research"},{"key":"10.1016\/j.cie.2023.109719_b0290","first-page":"774","article-title":"Pattern recognition using generalized portrait method","volume":"24","author":"Vapnik","year":"1963","journal-title":"Automation and Remote Control"},{"key":"10.1016\/j.cie.2023.109719_b0295","series-title":"Estimation of dependences based on empirical data","author":"Vapnik","year":"1982"},{"issue":"1","key":"10.1016\/j.cie.2023.109719_b0300","doi-asserted-by":"crossref","first-page":"e0262570","DOI":"10.1371\/journal.pone.0262570","article-title":"A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network","volume":"17","author":"Vinayagam","year":"2022","journal-title":"Plos one"},{"key":"10.1016\/j.cie.2023.109719_b0310","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.cie.2014.01.014","article-title":"A weighted support vector machine method for control chart pattern recognition","volume":"70","author":"Xanthopoulos","year":"2014","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2023.109719_b0315","series-title":"2022 13th Asian Control Conference (ASCC)","first-page":"619","article-title":"GNG-based NSGA-III for deviation correction trajectory in vertical geological drilling process","author":"Xu","year":"2022"}],"container-title":["Computers & Industrial Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S036083522300743X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S036083522300743X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,2]],"date-time":"2023-12-02T01:10:04Z","timestamp":1701479404000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S036083522300743X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":61,"alternative-id":["S036083522300743X"],"URL":"https:\/\/doi.org\/10.1016\/j.cie.2023.109719","relation":{},"ISSN":["0360-8352"],"issn-type":[{"value":"0360-8352","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new approach to probabilistic classification based on Gaussian process and support vector machine","name":"articletitle","label":"Article Title"},{"value":"Computers & Industrial Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cie.2023.109719","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109719"}}