{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T19:15:55Z","timestamp":1723230955656},"reference-count":82,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,7]],"date-time":"2022-11-07T00:00:00Z","timestamp":1667779200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003170","name":"Stiftelsen f\u00f6r Kunskaps- och Kompetensutveckling","doi-asserted-by":"publisher","award":["20200181"],"id":[{"id":"10.13039\/501100003170","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100014791","name":"University of Sk\u00f6vde","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100014791","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Industrial Engineering"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.cie.2022.108801","type":"journal-article","created":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T16:41:52Z","timestamp":1667925712000},"page":"108801","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["The impact of Industry 4.0 on bottleneck analysis in production and manufacturing: Current trends and future perspectives"],"prefix":"10.1016","volume":"174","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3810-5313","authenticated-orcid":false,"given":"Ehsan","family":"Mahmoodi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5530-3517","authenticated-orcid":false,"given":"Masood","family":"Fathi","sequence":"additional","affiliation":[]},{"given":"Morteza","family":"Ghobakhloo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1\u20132","key":"10.1016\/j.cie.2022.108801_b0005","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/s10479-020-03620-w","article-title":"Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics","volume":"308","author":"Akter","year":"2022","journal-title":"Annals of Operations Research"},{"issue":"3","key":"10.1016\/j.cie.2022.108801_b0015","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1080\/00207543.2019.1600765","article-title":"Smart production systems: Automating decision-making in manufacturing environment","volume":"58","author":"Alavian","year":"2019","journal-title":"International Journal of Production Research"},{"issue":"3","key":"10.1016\/j.cie.2022.108801_b0020","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1016\/j.jestch.2019.01.006","article-title":"Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems","volume":"22","author":"Alc\u00e1cer","year":"2019","journal-title":"Engineering Science and Technology, an International Journal"},{"key":"10.1016\/j.cie.2022.108801_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijpe.2020.107735","article-title":"Industry 4.0 innovation ecosystems: An evolutionary perspective on value cocreation","volume":"228","author":"Benitez","year":"2020","journal-title":"International Journal of Production Economics"},{"issue":"15","key":"10.1016\/j.cie.2022.108801_b0030","doi-asserted-by":"crossref","first-page":"4158","DOI":"10.1080\/00207543.2011.596847","article-title":"Detecting bottlenecks in serial production lines \u2013 a focus on interdeparture time variance","volume":"50","author":"Betterton","year":"2012","journal-title":"International Journal of Production Research"},{"issue":"1","key":"10.1016\/j.cie.2022.108801_b0035","first-page":"37","article-title":"How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective","volume":"8","author":"Brettel","year":"2014","journal-title":"International Journal of Information and Communication Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2019.119790","article-title":"Smart factory performance and Industry 4.0","volume":"150","author":"B\u00fcchi","year":"2020","journal-title":"Technological Forecasting and Social Change"},{"key":"10.1016\/j.cie.2022.108801_b0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107379","article-title":"Implementing Industry 4.0 principles","volume":"158","author":"Ca\u00f1as","year":"2021","journal-title":"Computers & Industrial Engineering"},{"issue":"2","key":"10.1016\/j.cie.2022.108801_b0050","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1007\/s11740-019-00947-7","article-title":"A shifting bottleneck procedure with multiple objectives in a complex manufacturing environment","volume":"14","author":"Cayo","year":"2020","journal-title":"Production Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0055","unstructured":"Chang, C. L., Wu, H. Y., & Chen, C. K. (2016). Heuristic methods for Q-time bottleneck dispatching. E-Manufacturing and Design Collaboration Symposium 2016, EMDC 2016 - Proceedings."},{"key":"10.1016\/j.cie.2022.108801_b0060","article-title":"Industry 4.0 applications for sustainable manufacturing: A systematic literature review and a roadmap to sustainable development","volume":"334","author":"Ching","year":"2021","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2022.108801_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijpe.2020.107617","article-title":"Behind the definition of Industry 4.0: Analysis and open questions","volume":"226","author":"Culot","year":"2020","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2022.108801_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106868","article-title":"Simulation in industry 4.0: A state-of-the-art review","volume":"149","author":"de Paula Ferreira","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0075","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.inffus.2021.09.021","article-title":"Mass customized\/personalized manufacturing in Industry 4.0 and blockchain: Research challenges, main problems, and the design of an information architecture","volume":"79","author":"Espinoza P\u00e9rez","year":"2022","journal-title":"Information Fusion"},{"key":"10.1016\/j.cie.2022.108801_b0080","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/978-3-030-78288-7_4","article-title":"Characteristics of Adaptable Control of Production Systems and the Role of Self-organization Towards Smart Manufacturing","volume":"626","author":"Estrada-Jimenez","year":"2021","journal-title":"IFIP Advances in Information and Communication Technology"},{"key":"10.1016\/j.cie.2022.108801_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2019.106246","article-title":"A Parallel Gated Recurrent Units (P-GRUs) network for the shifting lateness bottleneck prediction in make-to-order production system","volume":"140","author":"Fang","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0090","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ijpe.2019.01.004","article-title":"Industry 4.0 technologies: Implementation patterns in manufacturing companies","volume":"210","author":"Frank","year":"2019","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2022.108801_b0095","doi-asserted-by":"crossref","unstructured":"Gao, S., Higashi, T., Kobayashi, T., Taneda, K., Rubrico, J. I. U., & Ota, J. (2020). Buffer Allocation via Bottleneck-Based Variable Neighborhood Search. Applied Sciences 2020, Vol. 10, Page 8569, 10(23), 8569.","DOI":"10.3390\/app10238569"},{"issue":"6","key":"10.1016\/j.cie.2022.108801_b0100","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1108\/JMTM-02-2018-0057","article-title":"The future of manufacturing industry: A strategic roadmap toward Industry 4.0","volume":"29","author":"Ghobakhloo","year":"2018","journal-title":"Journal of Manufacturing Technology Management"},{"issue":"1","key":"10.1016\/j.cie.2022.108801_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1108\/JMTM-11-2018-0417","article-title":"Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing","volume":"31","author":"Ghobakhloo","year":"2020","journal-title":"Journal of Manufacturing Technology Management"},{"key":"10.1016\/j.cie.2022.108801_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2021.127052","article-title":"Industry 4.0 ten years on: A bibliometric and systematic review of concepts, sustainability value drivers, and success determinants","volume":"302","author":"Ghobakhloo","year":"2021","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2022.108801_b0115","series-title":"The Goal: A Process of Ongoing Improvement","author":"Goldratt","year":"1986"},{"issue":"2","key":"10.1016\/j.cie.2022.108801_b0120","doi-asserted-by":"crossref","first-page":"10714","DOI":"10.1016\/j.ifacol.2020.12.2850","article-title":"On the modelling of a decentralized production control system in the Industry 4.0 environment","volume":"53","author":"Grassi","year":"2020","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.cie.2022.108801_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107121","article-title":"Text mining approach for bottleneck detection and analysis in printed circuit board manufacturing","volume":"154","author":"Hao","year":"2021","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0130","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.promfg.2019.03.023","article-title":"Augmented Go & See: An approach for improved bottleneck identification in production lines","volume":"31","author":"Hofmann","year":"2019","journal-title":"Procedia Manufacturing"},{"issue":"4","key":"10.1016\/j.cie.2022.108801_b0140","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TASE.2010.2047857","article-title":"Multirobot coordination for flexible batch manufacturing systems experiencing bottlenecks","volume":"7","author":"Hoshino","year":"2010","journal-title":"IEEE Transactions on Automation Science and Engineering"},{"issue":"3","key":"10.1016\/j.cie.2022.108801_b0145","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/0951192X.2019.1571241","article-title":"A proactive task dispatching method based on future bottleneck prediction for the smart factory","volume":"32","author":"Huang","year":"2019","journal-title":"International Journal of Computer Integrated Manufacturing"},{"issue":"9","key":"10.1016\/j.cie.2022.108801_b0150","doi-asserted-by":"crossref","first-page":"2590","DOI":"10.1080\/00207543.2016.1245883","article-title":"Developing performance measurement system for Internet of Things and smart factory environment","volume":"55","author":"Hwang","year":"2017","journal-title":"International journal of production research"},{"issue":"7","key":"10.1016\/j.cie.2022.108801_b0155","doi-asserted-by":"crossref","first-page":"1994","DOI":"10.1080\/00207179.2019.1690690","article-title":"Closed Bernoulli lines with finite buffers: Real-time performance analysis, completion time bottleneck and carrier control","volume":"94","author":"Jia","year":"2021","journal-title":"International Journal of Control"},{"key":"10.1016\/j.cie.2022.108801_b0160","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.jmsy.2021.07.016","article-title":"Data-driven dynamic bottleneck detection in complex manufacturing systems","volume":"60","author":"Lai","year":"2021","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.cie.2022.108801_b0165","doi-asserted-by":"crossref","unstructured":"Lai, X., Shui, H., & Ni, J. (2018). A Two-Layer Long Short-Term Memory Network for Bottleneck Prediction in Multi-Job Manufacturing Systems. ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018, 3.","DOI":"10.1115\/MSEC2018-6678"},{"issue":"4","key":"10.1016\/j.cie.2022.108801_b0170","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/s12599-014-0334-4","article-title":"Industry 4.0","volume":"6","author":"Lasi","year":"2014","journal-title":"Business & information systems engineering"},{"issue":"6","key":"10.1016\/j.cie.2022.108801_b0175","doi-asserted-by":"crossref","first-page":"1745","DOI":"10.1080\/00207540802555769","article-title":"Simulation study of a bottleneck-based dispatching policy for a maintenance workforce","volume":"48","author":"Langer","year":"2010","journal-title":"International Journal of Production Research"},{"issue":"6","key":"10.1016\/j.cie.2022.108801_b0180","doi-asserted-by":"crossref","first-page":"1091","DOI":"10.1177\/0954405415583884","article-title":"Identification approach for bottleneck clusters in a job shop based on theory of constraints and sensitivity analysis","volume":"231","author":"Lei","year":"2017","journal-title":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture"},{"key":"10.1016\/j.cie.2022.108801_b0185","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.ijinfomgt.2019.04.003","article-title":"Prescriptive analytics: Literature review and research challenges","volume":"50","author":"Lepenioti","year":"2020","journal-title":"International Journal of Information Management"},{"key":"10.1016\/j.cie.2022.108801_b0190","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.jmsy.2018.03.001","article-title":"A systematic-theoretic analysis of data-driven throughput bottleneck detection of production systems","volume":"47","author":"Li","year":"2018","journal-title":"Journal of Manufacturing Systems"},{"issue":"21","key":"10.1016\/j.cie.2022.108801_b0195","doi-asserted-by":"crossref","first-page":"6145","DOI":"10.1080\/00207540802244240","article-title":"Real time production improvement through bottleneck control","volume":"47","author":"Li","year":"2009","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2022.108801_b0200","doi-asserted-by":"crossref","unstructured":"Li, L., Chang, Q., Ni, J., Xiao, G., & Biller, S. (2007). Bottleneck detection of manufacturing systems using data driven method. ISAM 2007 - IEEE International Symposium on Assembly and Manufacturing, 76\u201381.","DOI":"10.1109\/ISAM.2007.4288452"},{"issue":"2","key":"10.1016\/j.cie.2022.108801_b0205","doi-asserted-by":"crossref","DOI":"10.1115\/1.4003786","article-title":"Throughput bottleneck prediction of manufacturing systems using time series analysis","volume":"133","author":"Li","year":"2011","journal-title":"Journal of Manufacturing Science and Engineering, Transactions of the ASME"},{"key":"10.1016\/j.cie.2022.108801_b0210","doi-asserted-by":"crossref","unstructured":"Llopis, J., Lacasa, A., Garcia, E., & Mont\u00e9s, N. (2021). Towards Real Time Bottleneck Detection using Miniterms. Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, 165\u2013170.","DOI":"10.5220\/0010552900002994"},{"key":"10.1016\/j.cie.2022.108801_b0215","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.jmsy.2021.01.005","article-title":"Automated manufacturing system discovery and digital twin generation","volume":"59","author":"Lugaresi","year":"2021","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.cie.2022.108801_b0220","doi-asserted-by":"crossref","unstructured":"Martins, A., Costelha, H., & Neves, C. (2019). Shop Floor Virtualization and Industry 4.0. 19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019.","DOI":"10.1109\/ICARSC.2019.8733657"},{"key":"10.1016\/j.cie.2022.108801_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2021.120982","article-title":"Integrating lean and agile practices for achieving global sustainability goals in Indian manufacturing industries","volume":"171","author":"Mathiyazhagan","year":"2021","journal-title":"Technological Forecasting and Social Change"},{"key":"10.1016\/j.cie.2022.108801_b0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.agsy.2020.103034","article-title":"Immediate impacts of COVID-19 pandemic on bean value chain in selected countries in sub-Saharan Africa","volume":"188","author":"Nchanji","year":"2021","journal-title":"Agricultural Systems"},{"issue":"1","key":"10.1016\/j.cie.2022.108801_b0235","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1080\/0951192X.2021.1972468","article-title":"Lean techniques impact evaluation methodology based on a co-simulation framework for manufacturing systems","volume":"35","author":"Possik","year":"2021","journal-title":"International Journal of Computer Integrated Manufacturing"},{"key":"10.1016\/j.cie.2022.108801_b0240","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/j.procs.2022.01.314","article-title":"Bottleneck prediction and data-driven discrete-event simulation for a balanced manufacturing line","volume":"200","author":"Rocha","year":"2022","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.cie.2022.108801_b0245","doi-asserted-by":"crossref","unstructured":"Roser, C., Subramaniyan, M., Skoogh, A., & Johansson, B. (2021). An Enhanced Data-Driven Algorithm for Shifting Bottleneck Detection. IFIP Advances in Information and Communication Technology, 630 IFIP, 683\u2013689.","DOI":"10.1007\/978-3-030-85874-2_74"},{"key":"10.1016\/j.cie.2022.108801_b0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108428","article-title":"Prioritizing barriers for the adoption of Industry 4.0 technologies","volume":"171","author":"Senna","year":"2022","journal-title":"Computers & Industrial Engineering"},{"issue":"2","key":"10.1016\/j.cie.2022.108801_b0255","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1111\/poms.12230","article-title":"The Pursuit of Productivity","volume":"24","author":"Schmenner","year":"2015","journal-title":"Production and Operations Management"},{"issue":"5\u20136","key":"10.1016\/j.cie.2022.108801_b0260","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1108\/01443570110390462","article-title":"Agile manufacturing in practice Application of a methodology","volume":"21","author":"Sharifi","year":"2001","journal-title":"International Journal of Operations and Production Management"},{"key":"10.1016\/j.cie.2022.108801_b0265","doi-asserted-by":"crossref","unstructured":"Su, X., Lu, J., Chen, C., Yu, J., & Ji, W. (2022). Dynamic Bottleneck Identification of Manufacturing Resources in Complex Manufacturing System. Applied Sciences 2022, Vol. 12, Page 4195, 12(9), 4195.","DOI":"10.3390\/app12094195"},{"key":"10.1016\/j.cie.2022.108801_b0270","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1016\/j.jmsy.2021.07.021","article-title":"Artificial intelligence for throughput bottleneck analysis \u2013 State-of-the-art and future directions","volume":"60","author":"Subramaniyan","year":"2021","journal-title":"Journal of Manufacturing Systems"},{"issue":"3","key":"10.1016\/j.cie.2022.108801_b0275","doi-asserted-by":"crossref","first-page":"428","DOI":"10.2495\/DNE-V11-N3-428-437","article-title":"Real-time data-driven average active period method for bottleneck detection","volume":"11","author":"Subramaniyan","year":"2016","journal-title":"International Journal of Design & Nature and Ecodynamics"},{"issue":"1","key":"10.1016\/j.cie.2022.108801_b0280","doi-asserted-by":"crossref","first-page":"1239516","DOI":"10.1080\/23311916.2016.1239516","article-title":"An algorithm for data-driven shifting bottleneck detection","volume":"3","author":"Subramaniyan","year":"2016","journal-title":"Cogent Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0285","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.jmsy.2020.02.011","article-title":"A generic hierarchical clustering approach for detecting bottlenecks in manufacturing","volume":"55","author":"Subramaniyan","year":"2020","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.cie.2022.108801_b0290","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106851","article-title":"A data-driven approach to diagnosing throughput bottlenecks from a maintenance perspective","volume":"150","author":"Subramaniyan","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0295","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.cie.2018.04.024","article-title":"A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines","volume":"125","author":"Subramaniyan","year":"2018","journal-title":"Computers & Industrial Engineering"},{"issue":"1","key":"10.1016\/j.cie.2022.108801_b0300","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1080\/21693277.2018.1496491","article-title":"Data-driven algorithm for throughput bottleneck analysis of production systems","volume":"6","author":"Subramaniyan","year":"2018","journal-title":"Production & Manufacturing Research"},{"key":"10.1016\/j.cie.2022.108801_b0305","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.jmsy.2019.07.004","article-title":"A prognostic algorithm to prescribe improvement measures on throughput bottlenecks","volume":"53","author":"Subramaniyan","year":"2019","journal-title":"Journal of Manufacturing Systems"},{"issue":"4\u20135","key":"10.1016\/j.cie.2022.108801_b0310","article-title":"Predicting bottlenecks in manufacturing shops through capacity and demand observations from multiple perspectives","volume":"32","author":"Tang","year":"2018","journal-title":"International Journal of Manufacturing Technology and Management"},{"key":"10.1016\/j.cie.2022.108801_b0315","article-title":"Bottleneck detection in high-variety make-to-Order shops with complex routings: An assessment by simulation","author":"Th\u00fcrer","year":"2021","journal-title":"Production Planning & Control"},{"key":"10.1016\/j.cie.2022.108801_b0320","doi-asserted-by":"crossref","unstructured":"Tu, J., Bai, Y., Yang, M., Zhang, L., & Denno, P. (2019). Dynamic bottleneck in serial production lines with bernoulli machines. IEEE International Conference on Automation Science and Engineering, 2019-Augus, 79\u201384.","DOI":"10.1109\/COASE.2019.8842924"},{"issue":"4","key":"10.1016\/j.cie.2022.108801_b0325","doi-asserted-by":"crossref","first-page":"1822","DOI":"10.1109\/TASE.2020.3021346","article-title":"Real-Time Bottleneck in Serial Production Lines with Bernoulli Machines: Theory and Case Study","volume":"18","author":"Tu","year":"2021","journal-title":"IEEE Transactions on Automation Science and Engineering"},{"issue":"13","key":"10.1016\/j.cie.2022.108801_b0330","doi-asserted-by":"crossref","first-page":"3989","DOI":"10.1080\/00207543.2021.2019343","article-title":"Performance analysis and optimisation of Bernoulli serial production lines with dynamic real-time bottleneck identification and mitigation","volume":"60","author":"Tu","year":"2022","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2022.108801_b0335","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.1016\/j.promfg.2020.01.377","article-title":"Mitigating the Effects of Bottlenecks in Wagon Manufacturing","volume":"39","author":"Uluda\u01e7","year":"2019","journal-title":"Procedia Manufacturing"},{"key":"10.1016\/j.cie.2022.108801_b0340","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jmsy.2018.01.003","article-title":"Deep learning for smart manufacturing: Methods and applications","volume":"48","author":"Wang","year":"2018","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.cie.2022.108801_b0345","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.cie.2016.05.039","article-title":"Schedule-based execution bottleneck identification in a job shop","volume":"98","author":"Wang","year":"2016","journal-title":"Computers & Industrial Engineering"},{"issue":"4","key":"10.1016\/j.cie.2022.108801_b0350","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1007\/s40436-017-0204-7","article-title":"Industry 4.0: A way from mass customization to mass personalization production","volume":"5","author":"Wang","year":"2017","journal-title":"Advances in Manufacturing"},{"issue":"2","key":"10.1016\/j.cie.2022.108801_b0355","doi-asserted-by":"crossref","first-page":"14840","DOI":"10.3182\/20080706-5-KR-1001.02512","article-title":"A New Method of Dynamic Bottleneck Detection for Semiconductor Manufacturing Line","volume":"41","author":"Wang","year":"2008","journal-title":"IFAC Proceedings Volumes"},{"key":"10.1016\/j.cie.2022.108801_b0360","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.procir.2015.08.071","article-title":"Real-time Bottleneck Detection and Prediction to Prioritize Fault Repair in Interlinked Production Lines","volume":"37","author":"Wedel","year":"2015","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.cie.2022.108801_b0365","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1007\/978-3-030-90700-6_69","article-title":"A Holistic Methodology for Successive Bottleneck Analysis in Dynamic Value Streams of Manufacturing Companies","author":"West","year":"2022","journal-title":"Lecture Notes in Mechanical Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0370","doi-asserted-by":"crossref","DOI":"10.1016\/j.infsof.2022.106908","article-title":"Successful combination of database search and snowballing for identification of primary studies in systematic literature studies","volume":"147","author":"Wohlin","year":"2022","journal-title":"Information and Software Technology"},{"issue":"6","key":"10.1016\/j.cie.2022.108801_b0375","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1007\/s10845-009-0244-3","article-title":"A new bottleneck detecting approach to productivity improvement of knowledgeable manufacturing system","volume":"21","author":"Yan","year":"2010","journal-title":"Journal of Intelligent Manufacturing"},{"key":"10.1016\/j.cie.2022.108801_b0380","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/978-3-319-99707-0_14","article-title":"acatech Industrie 4.0 Maturity Index \u2013 A Multidimensional Maturity Model","volume":"536","author":"Zeller","year":"2018","journal-title":"IFIP Advances in Information and Communication Technology"},{"key":"10.1016\/j.cie.2022.108801_b0385","doi-asserted-by":"crossref","DOI":"10.1016\/j.jii.2021.100224","article-title":"Study on artificial intelligence: The state of the art and future prospects","volume":"23","author":"Zhang","year":"2021","journal-title":"Journal of Industrial Information Integration"},{"key":"10.1016\/j.cie.2022.108801_b0390","first-page":"253","article-title":"An approach of dynamic bottleneck machine dispatching for semiconductor wafer fab","author":"Zhang","year":"2007","journal-title":"IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings"},{"key":"10.1016\/j.cie.2022.108801_b0395","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Zeng, L., Peng, E., Luo, Z., & Zhou, D. wei. (2021). An Intelligent Prediction Model for Bottleneck in Production System Based on Cloud Manufacturing. Mechanisms and Machine Science, 105, 237\u2013245.","DOI":"10.1007\/978-3-030-75793-9_24"},{"issue":"8","key":"10.1016\/j.cie.2022.108801_b0400","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1080\/0951192X.2014.900874","article-title":"Real-time information capturing and integration framework of the internet of manufacturing things","volume":"28","author":"Zhang","year":"2015","journal-title":"International Journal of Computer Integrated Manufacturing"},{"issue":"6","key":"10.1016\/j.cie.2022.108801_b0405","doi-asserted-by":"crossref","first-page":"1922","DOI":"10.1080\/00207543.2020.1824085","article-title":"The applications of Industry 4.0 technologies in manufacturing context: A systematic literature review","volume":"59","author":"Zheng","year":"2021","journal-title":"International Journal of Production Research"},{"issue":"3","key":"10.1016\/j.cie.2022.108801_b0410","first-page":"363","article-title":"Integrated analysis method: Visual modelling, simulation, diagnosis and reduction for bottleneck processes of production lines","volume":"30","author":"Zhou","year":"2006","journal-title":"Iranian Journal of Science and Technology, Transaction B: Engineering"},{"key":"10.1016\/j.cie.2022.108801_b0415","doi-asserted-by":"crossref","first-page":"563","DOI":"10.4028\/www.scientific.net\/MSF.471-472.563","article-title":"Simulation diagnosis for the bottleneck of production lines and it\u2019s application","volume":"471\u2013472","author":"Zhou","year":"2004","journal-title":"Materials Science Forum"},{"key":"10.1016\/j.cie.2022.108801_b0420","doi-asserted-by":"crossref","unstructured":"Zhu, F., Wang, R., & Wang, C. (2019). Intelligent Workshop Bottleneck Prediction Based on Complex Network. Proceedings of 2019 IEEE International Conference on Mechatronics and Automation, ICMA 2019, 1682\u20131686.","DOI":"10.1109\/ICMA.2019.8816432"}],"container-title":["Computers & Industrial Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835222007896?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835222007896?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,26]],"date-time":"2024-01-26T11:23:53Z","timestamp":1706268233000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0360835222007896"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":82,"alternative-id":["S0360835222007896"],"URL":"https:\/\/doi.org\/10.1016\/j.cie.2022.108801","relation":{},"ISSN":["0360-8352"],"issn-type":[{"value":"0360-8352","type":"print"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The impact of Industry 4.0 on bottleneck analysis in production and manufacturing: Current trends and future perspectives","name":"articletitle","label":"Article Title"},{"value":"Computers & Industrial Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cie.2022.108801","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108801"}}