{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:33:27Z","timestamp":1726850007093},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001807","name":"FAPESP","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002322","name":"CAPES","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Industrial Engineering"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.cie.2019.106191","type":"journal-article","created":{"date-parts":[[2019,11,19]],"date-time":"2019-11-19T17:13:09Z","timestamp":1574183589000},"page":"106191","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":50,"special_numbering":"C","title":["An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR\u00ae metrics"],"prefix":"10.1016","volume":"139","author":[{"given":"Francisco Rodrigues","family":"Lima-Junior","sequence":"first","affiliation":[]},{"given":"Luiz Cesar Ribeiro","family":"Carpinetti","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cie.2019.106191_b9000","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.ejor.2012.04.009","article-title":"An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data","volume":"222","author":"Akko\u00e7","year":"2012","journal-title":"European Journal of Operational Research"},{"key":"10.1016\/j.cie.2019.106191_b9005","unstructured":"APICS, 2018. American Production and Inventory Control Society. Benchmark your Supply Chain: Close Performance Gaps. http:\/\/www.apics.org\/sites\/apics-supply-chain-council\/products-and-services\/benchmarking."},{"key":"10.1016\/j.cie.2019.106191_b0005","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1007\/s10845-015-1146-1","article-title":"Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ANFIS) for inventory control","volume":"29","author":"Aengchuan","year":"2018","journal-title":"Journal of Intelligent Manufacturing"},{"key":"10.1016\/j.cie.2019.106191_b0010","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.cie.2018.05.044","article-title":"Fuzzy QFD approach for managing SCOR performance indicators","volume":"122","author":"Akkawuttiwanich","year":"2018","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0015","doi-asserted-by":"crossref","first-page":"5137","DOI":"10.1080\/00207540903089536","article-title":"Supply chain performance measurement: A literature review","volume":"48","author":"Akyuz","year":"2010","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b9010","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1108\/13598541211212221","article-title":"Evaluating ecological sustainable performance measures for supply chain management","volume":"17","author":"Bai","year":"2012","journal-title":"Supply Chain Management: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.pursup.2019.100572","article-title":"Purchasing and supply management (PSM) competencies: Current and future requirements","volume":"25","author":"Bals","year":"2019","journal-title":"Journal of Purchasing and Supply Management"},{"key":"10.1016\/j.cie.2019.106191_b0025","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1108\/01443579910249714","article-title":"Measuring supply chain performance","volume":"19","author":"Beamon","year":"1999","journal-title":"International Journal of Operations & Production Management"},{"key":"10.1016\/j.cie.2019.106191_b9015","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.ejor.2013.09.032","article-title":"Quantitative models for managing supply chain risks","volume":"233","author":"Brandenburg","year":"2014","journal-title":"Europen Journal of Operational Research"},{"key":"10.1016\/j.cie.2019.106191_b0030","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.aaspro.2015.01.043","article-title":"Evaluation of poultry supply chain performance in XYZ slaughtering house Yogyakarta using SCOR and AHP method","volume":"3","author":"Bukhori","year":"2015","journal-title":"Agriculture and Agricultural Science Procedia"},{"key":"10.1016\/j.cie.2019.106191_b0035","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.compind.2018.02.010","article-title":"Digital supply chain: Literature review and a proposed framework for future research","volume":"97","author":"B\u00fcy\u00fck\u00f6zkan","year":"2018","journal-title":"Computers and Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0040","series-title":"Supply chain management: Strategy, planning and operation","author":"Chopra","year":"2013"},{"key":"10.1016\/j.cie.2019.106191_b0045","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/16258312.2018.1465796","article-title":"An integrated performance measurement framework for enhancing public health care supply chains","volume":"19","author":"Chorfi","year":"2018","journal-title":"Supply Chain Forum: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b0050","doi-asserted-by":"crossref","first-page":"2459","DOI":"10.1007\/s10845-011-0512-x","article-title":"Overall performance measurement in a supply chain: Towards a supplier-prime manufacturer based model","volume":"23","author":"Clivill\u00e9","year":"2012","journal-title":"Journal of Intelligent Manufacturing"},{"key":"10.1016\/j.cie.2019.106191_b0055","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.sbspro.2016.07.150","article-title":"Using SCOR model to gain competitive advantage: A Literature review","volume":"229","author":"Delipinar","year":"2016","journal-title":"Procedia - Social and Behavioral Sciences"},{"key":"10.1016\/j.cie.2019.106191_b0060","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1016\/j.matdes.2015.12.005","article-title":"Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network","volume":"92","author":"Dewan","year":"2016","journal-title":"Materials and Design"},{"key":"10.1016\/j.cie.2019.106191_b0065","doi-asserted-by":"crossref","first-page":"826","DOI":"10.1016\/j.compchemeng.2017.02.006","article-title":"From process control to supply chain management: An overview of integrated decision making strategies","volume":"106","author":"Dias","year":"2017","journal-title":"Computers & Chemical Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0070","first-page":"Hong-Kong","article-title":"Assessing flexibility in supply chain using adaptive neuro fuzzy inference system","volume":"2009)","author":"Didehkhani","year":"2009","journal-title":"IEEE International Conference On Industrial Engineering And Engineering Management (IEEM"},{"key":"10.1016\/j.cie.2019.106191_b0075","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.ijpe.2018.04.027","article-title":"Systematic mechanism for identifying the relative impact of supply chain performance areas on the overall supply chain performance using SCOR model and SEM","volume":"201","author":"Dissanayake","year":"2018","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0080","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1016\/j.jclepro.2016.03.117","article-title":"Sustainable supply chain management: Framework and further research directions","volume":"142","author":"Dubey","year":"2017","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2019.106191_b0085","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1016\/j.cie.2011.11.004","article-title":"An integration methodology based on fuzzy inference systems and neural approaches for multi-stage supply-chains","volume":"62","author":"Efendigil","year":"2012","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0090","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1108\/IJPPM-04-2018-0147","article-title":"Key characteristics for designing a supply chain performance measurement system","volume":"68","author":"Elgazzar","year":"2019","journal-title":"International Journal of Productivity and Performance Management"},{"key":"10.1016\/j.cie.2019.106191_b0095","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1002\/cem.2503","article-title":"Compressed images for affinity prediction (CIFAP): A study on predicting binding affinities for checkpoint kinase 1 protein inhibitors","volume":"27","author":"Erdas","year":"2013","journal-title":"Chemometrics"},{"key":"10.1016\/j.cie.2019.106191_b0100","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.ijpe.2010.11.024","article-title":"A framework for analysing supply chain performance evaluation models","volume":"142","author":"Estampe","year":"2013","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0105","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/S1672-6529(13)60234-6","article-title":"An evaluation model of supply chain performances using 5DBSC and LMBP neural network algorithm","volume":"10","author":"Fan","year":"2013","journal-title":"Journal of Bionic Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0110","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.ijpe.2011.06.011","article-title":"A fuzzy logic approach to supply chain performance management","volume":"134","author":"Ganga","year":"2011","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0115","first-page":"59","article-title":"Application of SCOR model in an oil- producing company","volume":"4","author":"Golparvar","year":"2009","journal-title":"Journal of Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0120","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1504\/IJLSM.2018.10015227","article-title":"Supply chain performance measurement: A systematic literature review","volume":"31","author":"Guersola","year":"2018","journal-title":"Int. J. Logistics Systems and Management"},{"key":"10.1016\/j.cie.2019.106191_b0125","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.ijpe.2003.08.003","article-title":"A framework for supply chain performance measurement","volume":"87","author":"Gunasekaran","year":"2004","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0130","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1108\/01443570110358468","article-title":"Performance measures and metrics in a supply chain environment","volume":"21","author":"Gunasekaran","year":"2001","journal-title":"International Journal of Operations & Production Management"},{"key":"10.1016\/j.cie.2019.106191_b0135","doi-asserted-by":"crossref","first-page":"14907","DOI":"10.1016\/j.eswa.2011.05.056","article-title":"An approach based on ANFIS input selection and modeling for supplier selection problem","volume":"38","author":"G\u00fcneri","year":"2011","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.cie.2019.106191_b0140","series-title":"Introduction to supply chain management","author":"Handfield","year":"1999"},{"key":"10.1016\/j.cie.2019.106191_b0145","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1108\/13598541111115347","article-title":"A method to compare supply chains of an industry","volume":"16","author":"Jalalvand","year":"2011","journal-title":"Supply Chain Management: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b9020","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1109\/21.256541","article-title":"ANFIS: adaptive-network-based fuzzy inference system","volume":"23","author":"Jang","year":"1993","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics"},{"key":"10.1016\/j.cie.2019.106191_b0150","first-page":"187","article-title":"An adaptive neuro fuzzy inference system for supply chain agility evaluation","volume":"20","author":"Jassbi","year":"2010","journal-title":"International Journal Of Industrial Engineering & Production Research"},{"key":"10.1016\/j.cie.2019.106191_b0155","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.asoc.2013.10.014","article-title":"Applications of neuro fuzzy systems: A brief review and future outline","volume":"15","author":"Kar","year":"2014","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.cie.2019.106191_b0160","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1016\/j.asoc.2009.09.004","article-title":"A review of soft computing applications in supply chain management","volume":"10","author":"Ko","year":"2010","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.cie.2019.106191_b0165","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s10845-011-0547-z","article-title":"A SCOR based approach for measuring a benchmarkable supply chain performance","volume":"24","author":"Kocaoglu","year":"2013","journal-title":"Journal of Intelligent Manufacturing"},{"key":"10.1016\/j.cie.2019.106191_b0170","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.apergo.2015.03.001","article-title":"Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate","volume":"50","author":"Kolus","year":"2015","journal-title":"Applied Ergonomics"},{"key":"10.1016\/j.cie.2019.106191_b0175","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1080\/16258312.2015.11728691","article-title":"Measurement and management of supply chain performance: Practices in today\u2019s large companies","volume":"16","author":"Lakri","year":"2015","journal-title":"Supply Chain Forum: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b0180","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.cie.2017.09.022","article-title":"Quantitative models for supply chain performance evaluation: A literature review","volume":"113","author":"Lima-Junior","year":"2017","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b9030","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.ijpe.2019.02.001","article-title":"Predicting supply chain performance based on SCOR\u00ae metrics and multilayer perceptron neural networks","volume":"212","author":"Lima-Junior","year":"2019","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0185","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1016\/j.cie.2017.06.010","article-title":"A methodology to assess the supply chain performance based on gap-based measures","volume":"110","author":"Liu","year":"2017","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0190","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1080\/16258312.2019.1577114","article-title":"Adapting to supply chain 4.0: An explorative study of multinational companies","volume":"20","author":"Makris","year":"2019","journal-title":"Supply Chain Forum: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b0195","unstructured":"Mathworks. MATLAB\u00ae Fuzzy Logic Tool\u2122 - Users'Guide. The MathWorks, Inc., USA, March 2019."},{"key":"10.1016\/j.cie.2019.106191_b0200","doi-asserted-by":"crossref","first-page":"1887","DOI":"10.1080\/00207543.2013.787175","article-title":"Supply chain design: Issues, challenges, frameworks and solutions","volume":"52","author":"Melnyk","year":"2014","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2019.106191_b0205","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.jom.2004.01.004","article-title":"Metrics and performance measurement in operations management: Dealing with the metrics maze","volume":"22","author":"Melnyk","year":"2004","journal-title":"Journal of Operations Management"},{"key":"10.1016\/j.cie.2019.106191_b0210","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/j.2158-1592.2001.tb00001.x","article-title":"Defining supply chain management","volume":"22","author":"Mentzer","year":"2001","journal-title":"Journal of Business Logistics"},{"key":"10.1016\/j.cie.2019.106191_b0215","first-page":"27","article-title":"Supply chain performance measurement using SCOR model based on interval-valued fuzzy TOPSIS","author":"Moharamkhani","year":"2017","journal-title":"International Journal of Logistics Systems and Management"},{"key":"10.1016\/j.cie.2019.106191_b0220","series-title":"Applied statistics and probability for engineers","author":"Montgomery","year":"2011"},{"key":"10.1016\/j.cie.2019.106191_b0225","doi-asserted-by":"crossref","first-page":"94","DOI":"10.12660\/joscmv6n2p94-113","article-title":"Supply chain performance models: A literature review on approaches, techniques, and criteria","volume":"6","author":"Najmi","year":"2013","journal-title":"Journal of Operations and Supply Chain Management"},{"key":"10.1016\/j.cie.2019.106191_b0230","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.ijpe.2015.08.008","article-title":"A systematic literature review of the supply chain operations reference (SCOR) model application with special attention to environmental issues","volume":"109","author":"Ntabe","year":"2015","journal-title":"International Journal of Production Economics"},{"key":"10.1016\/j.cie.2019.106191_b0235","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1016\/j.jclepro.2018.02.197","article-title":"A group decision model based on quality function deployment and hesitant fuzzy for selecting supply chain sustainability metrics","volume":"183","author":"Osiro","year":"2018","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2019.106191_b0240","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.asoc.2014.06.032","article-title":"Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems","volume":"24","author":"\u00d6zkan","year":"2014","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.cie.2019.106191_b0245","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.ijpe.2016.12.028","article-title":"The impact of operations and supply chain strategies on integration and performance","volume":"185","author":"Qi","year":"2017","journal-title":"International Journal of Production Economics"},{"issue":"4","key":"10.1016\/j.cie.2019.106191_b9035","doi-asserted-by":"crossref","DOI":"10.1007\/s10462-016-9536-0","article-title":"A review on the applications of neuro-fuzzy systems in business","volume":"49","author":"Rajab","year":"2018","journal-title":"Artificial Intelligence Review"},{"key":"10.1016\/j.cie.2019.106191_b0250","unstructured":"SCC - Supply chain council. (2012). Supply chain operations reference model, version 11.0. Supply Chain Council, 2012."},{"key":"10.1016\/j.cie.2019.106191_b0255","doi-asserted-by":"crossref","first-page":"4917","DOI":"10.1080\/00207543.2015.1005251","article-title":"A SCOR-based model for supply chain performance measurement: Application in the footwear industry","volume":"53","author":"Sellitto","year":"2015","journal-title":"International Journal of Production Research"},{"key":"10.1016\/j.cie.2019.106191_b0260","doi-asserted-by":"crossref","first-page":"1699","DOI":"10.1016\/j.jclepro.2008.04.020","article-title":"From a literature review to a conceptual framework for sustainable supply chain management","volume":"16","author":"Seuring","year":"2008","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.cie.2019.106191_b0265","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1080\/13675567.2018.1448767","article-title":"Creating a competitive advantage in the global flight catering supply chain: A case study using SCOR model","volume":"21","author":"Sundarakani","year":"2018","journal-title":"International Journal of Logistics Research and Applications"},{"key":"10.1016\/j.cie.2019.106191_b0270","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.eswa.2016.05.027","article-title":"A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection","volume":"61","author":"Tavana","year":"2016","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.cie.2019.106191_b0275","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1108\/17410380810843480","article-title":"A conceptual model of performance measurement for supply chains: Alternative considerations","volume":"19","author":"Theeranuphattana","year":"2008","journal-title":"Journal of Manufacturing Technology Management"},{"key":"10.1016\/j.cie.2019.106191_b0280","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1108\/14635770710730946","article-title":"Predictive performance measurement system: A fuzzy expert system approach","volume":"14","author":"Unahabhokha","year":"2007","journal-title":"Benchmarking: An International Journal"},{"key":"10.1016\/j.cie.2019.106191_b0285","first-page":"36","article-title":"Research on supply chain performance evaluation of fresh agricultural products","volume":"40","author":"Wang","year":"2013","journal-title":"INMATEH - Agricultural Engineering"},{"key":"10.1016\/j.cie.2019.106191_b0290","first-page":"2779","article-title":"Fuzzy evaluation on supply chains\u2019 overall performance based on AHM and M(1,2,3)","volume":"12","author":"Yang","year":"2012","journal-title":"Journal of software"},{"key":"10.1016\/j.cie.2019.106191_b0295","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1007\/s10100-013-0294-7","article-title":"Towards a multi-objective performance assessment and optimization model of a two-echelon supply chain using SCOR metrics","volume":"22","author":"Zhang","year":"2014","journal-title":"Central European Journal of Operations Research"}],"container-title":["Computers & Industrial Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835219306606?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0360835219306606?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,1,7]],"date-time":"2020-01-07T07:16:56Z","timestamp":1578381416000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0360835219306606"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":66,"alternative-id":["S0360835219306606"],"URL":"https:\/\/doi.org\/10.1016\/j.cie.2019.106191","relation":{},"ISSN":["0360-8352"],"issn-type":[{"value":"0360-8352","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR\u00ae metrics","name":"articletitle","label":"Article Title"},{"value":"Computers & Industrial Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cie.2019.106191","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106191"}}