{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T01:10:19Z","timestamp":1732669819532,"version":"3.28.2"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.camwa.2024.09.019","type":"journal-article","created":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T14:05:18Z","timestamp":1727186718000},"page":"287-297","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A hybrid model for accurate prediction of composite longitudinal elastic modulus"],"prefix":"10.1016","volume":"174","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9780-2581","authenticated-orcid":false,"given":"Ilige S.","family":"Hage","sequence":"first","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0010","doi-asserted-by":"crossref","first-page":"66","DOI":"10.3390\/jcs2040066","article-title":"Natural fibre composites and their applications: a review","volume":"2","author":"Pe\u00e7as","year":"2018","journal-title":"J. Compos. Sci."},{"year":"2004","series-title":"Composite Materials for Aircraft Structures","author":"Baker","key":"10.1016\/j.camwa.2024.09.019_br0020"},{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0030","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/0266-3538(86)90002-3","article-title":"The potential for composites in structural automotive applications","volume":"26","author":"Beardmore","year":"1986","journal-title":"Compos. Sci. Technol."},{"key":"10.1016\/j.camwa.2024.09.019_br0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2019.111280","article-title":"Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints","volume":"226","author":"Shafighfard","year":"2019","journal-title":"Compos. Struct."},{"key":"10.1016\/j.camwa.2024.09.019_br0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.compstruct.2022.116027","article-title":"Experimental and numerical study of the additively manufactured carbon fibre reinforced polymers including fibre Bragg grating sensors","volume":"299","author":"Shafighfard","year":"2022","journal-title":"Compos. Struct."},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0060","doi-asserted-by":"crossref","DOI":"10.1515\/jmbm-2022-0054","article-title":"Artificial neural network for predicting the mechanical performance of additive manufacturing thermoset carbon fiber composite materials","volume":"31","author":"Nawafleh","year":"2022","journal-title":"J. Mech. Behav. Mater."},{"issue":"2","key":"10.1016\/j.camwa.2024.09.019_br0070","doi-asserted-by":"crossref","first-page":"103","DOI":"10.14445\/22315381\/IJETT-V66P218","article-title":"Determining the mechanical properties of a new composite material using artificial neural networks","volume":"66","author":"Ciupan","year":"2018","journal-title":"Int. J. Eng. Trends Technol."},{"issue":"12","key":"10.1016\/j.camwa.2024.09.019_br0080","doi-asserted-by":"crossref","DOI":"10.3390\/fib9120078","article-title":"Artificial neural networks to predict the mechanical properties of natural fibre-reinforced compressed Earth blocks (cebs)","volume":"9","author":"Turco","year":"2021","journal-title":"Fibers"},{"key":"10.1016\/j.camwa.2024.09.019_br0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2023.110315","article-title":"Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: a comparative study","volume":"195","author":"Bagherzadeh","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/fib9010006","article-title":"Techniques for modelling and optimizing the mechanical properties of natural fiber composites: a review","volume":"9","author":"Mulenga","year":"2021","journal-title":"Fibers"},{"issue":"7","key":"10.1016\/j.camwa.2024.09.019_br0110","doi-asserted-by":"crossref","first-page":"980","DOI":"10.1016\/j.compscitech.2011.03.003","article-title":"Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept","volume":"71","author":"Wang","year":"2011","journal-title":"Compos. Sci. Technol."},{"key":"10.1016\/j.camwa.2024.09.019_br0120","doi-asserted-by":"crossref","DOI":"10.1155\/2014\/439819","article-title":"An FEM analysis with consideration of random void defects for predicting the mechanical properties of 3d braided composites","volume":"2014","author":"Xu","year":"2014","journal-title":"Adv. Mater. Sci. Eng."},{"issue":"5","key":"10.1016\/j.camwa.2024.09.019_br0130","first-page":"1098","article-title":"Evaluation of the mechanical properties of carbon nanotube based composites by finite element analysis","volume":"2","author":"Joshi","year":"2010","journal-title":"Int. J. Eng. Sci. Technol."},{"issue":"3","key":"10.1016\/j.camwa.2024.09.019_br0140","first-page":"25","article-title":"Experimental research and finite element analysis of elastic and strength properties of fiberglass composite material","volume":"47","author":"Nekliudova","year":"2014","journal-title":"Mag. Civ. Eng."},{"year":"1951","series-title":"Theory of Elasticity","author":"Timoshenko","key":"10.1016\/j.camwa.2024.09.019_br0150"},{"issue":"1226","key":"10.1016\/j.camwa.2024.09.019_br0160","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1098\/rspa.1957.0133","article-title":"The determination of the elastic field of an ellipsoidal inclusion, and related problems","volume":"241","author":"Eshelby","year":"1957","journal-title":"Proc. R. Soc. Lond. A"},{"issue":"5","key":"10.1016\/j.camwa.2024.09.019_br0170","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/0001-6160(73)90064-3","article-title":"Average stress in matrix and average elastic energy of materials with misfitting inclusions","volume":"21","author":"Mori","year":"1973","journal-title":"Acta Metall."},{"year":"1999","series-title":"On the Imperfectly Bonded Spherical Inclusion Problem","author":"Zhong","key":"10.1016\/j.camwa.2024.09.019_br0180"},{"year":"1996","series-title":"On the Eigenstrain Problem of a Spherical Inclusion with an Imperfectly Bonded Interface","author":"Zhong","key":"10.1016\/j.camwa.2024.09.019_br0190"},{"year":"2007","series-title":"The Eshelby Tensors in a Finite Spherical Domain\u2014Part I: Theoretical Formulations","author":"Li","key":"10.1016\/j.camwa.2024.09.019_br0200"},{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0210","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1115\/1.2711228","article-title":"The Eshelby tensors in a finite spherical domain\u2014part II: applications to homogenization","volume":"74","author":"Li","year":"2007","journal-title":"J. Appl. Mech."},{"issue":"01","key":"10.1016\/j.camwa.2024.09.019_br0220","doi-asserted-by":"crossref","DOI":"10.1142\/S1758825118500114","article-title":"An experimentally validated combined stiffness formulation for a finite domain considering volume fraction, shape, orientation, and location of a single inclusion","volume":"10","author":"Hage","year":"2018","journal-title":"Int. J. Appl. Mech."},{"issue":"2","key":"10.1016\/j.camwa.2024.09.019_br0230","doi-asserted-by":"crossref","first-page":"113","DOI":"10.5802\/crmeca.11","article-title":"Experimentally validated combined stiffness expression for finite domain containing multiple inclusions","volume":"348","author":"Hage","year":"2020","journal-title":"C. R., M\u00e9c."},{"key":"10.1016\/j.camwa.2024.09.019_br0240","series-title":"52nd AIAA\/ASME\/ASCE\/AHS\/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA\/ASME\/AHS Adaptive Structures Conference 13t","article-title":"Modeling and uncertainty quantification of nanofiber enhanced polymer composite materials with functionally graded interphase properties","author":"Rouhi","year":"2011"},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0250","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1080\/19475411.2014.896427","article-title":"Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites","volume":"5","author":"Dong","year":"2014","journal-title":"Int. J. Smart Nano Mater."},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0260","first-page":"33","article-title":"Numerical characterization of porous solids and performance evaluation of theoretical models via the precorrected-FFT accelerated BEM","volume":"55","author":"Yan","year":"2010"},{"key":"10.1016\/j.camwa.2024.09.019_br0270","doi-asserted-by":"crossref","DOI":"10.1016\/j.mechmat.2023.104597","article-title":"Study of effective elastic properties of heterogeneous materials with an artificial neural network model","volume":"179","author":"Xue","year":"2023","journal-title":"Mech. Mater."},{"key":"10.1016\/j.camwa.2024.09.019_br0280","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfracmech.2020.106907","article-title":"Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network","volume":"228","author":"Sharma","year":"2020","journal-title":"Eng. Fract. Mech."},{"issue":"7","key":"10.1016\/j.camwa.2024.09.019_br0290","first-page":"1","article-title":"Use of artificial neural network and theoretical modeling to predict the effective elastic modulus of composites with ellipsoidal inclusions","volume":"1","author":"Upadhyay","year":"2014","journal-title":"Open Access Libr. J."},{"key":"10.1016\/j.camwa.2024.09.019_br0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.compgeo.2024.106294","article-title":"Estimation of macroscopic failure strength of heterogeneous geomaterials containing inclusion and pore with artificial neural network approach","volume":"170","author":"Xue","year":"2024","journal-title":"Comput. Geotech."},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0310","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/s11831-018-9301-4","article-title":"Virtual, digital and hybrid twins","volume":"27","author":"Chinesta","year":"2018","journal-title":"Arch. Comput. Methods Eng."},{"issue":"3","key":"10.1016\/j.camwa.2024.09.019_br0320","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12289-022-01678-4","article-title":"Engineering empowered by physics-based and data-driven hybrid models: a methodological overview","volume":"15","author":"Champaney","year":"2022","journal-title":"Int. J. Mater. Form."},{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0330","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s12289-018-1448-x","article-title":"Hybrid constitutive modeling: data-driven learning of corrections to plasticity models","volume":"12","author":"Ib\u00e1\u00f1ez","year":"2019","journal-title":"Int. J. Mater. Form."},{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0340","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/designs4040044","article-title":"Empowering design based on hybrid twinTM: application to acoustic resonators","volume":"4","author":"Mart\u00edn","year":"2020","journal-title":"Designs"},{"issue":"24","key":"10.1016\/j.camwa.2024.09.019_br0350","doi-asserted-by":"crossref","DOI":"10.3390\/app9245458","article-title":"Development of hybrid machine learning models for predicting the critical buckling load of I-shaped cellular beams","volume":"9","author":"Ly","year":"2019","journal-title":"Appl. Sci."},{"issue":"13","key":"10.1016\/j.camwa.2024.09.019_br0360","doi-asserted-by":"crossref","DOI":"10.3390\/s22134774","article-title":"A novel digital twin architecture with similarity-based hybrid modeling for supporting dependable disaster management systems","volume":"22","author":"Yun","year":"2022","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.camwa.2024.09.019_br0370","doi-asserted-by":"crossref","DOI":"10.1007\/s12289-022-01679-3","article-title":"Hybrid twin models of fiber compaction for composite manufacturing based on dual Kriging","volume":"15","author":"Trochu","year":"2022","journal-title":"Int. J. Mater. Form."},{"issue":"3","key":"10.1016\/j.camwa.2024.09.019_br0380","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s11029-017-9667-7","article-title":"Hybrid model for homogenization of the elastoplastic properties of isotropic matrix composites","volume":"53","author":"Fedotov","year":"2017","journal-title":"Mech. Compos. Mater."},{"issue":"9","key":"10.1016\/j.camwa.2024.09.019_br0390","doi-asserted-by":"crossref","first-page":"1507","DOI":"10.1007\/s00419-018-1384-8","article-title":"Influences of inclusions and corresponding interphase on elastic properties of composites","volume":"88","author":"Liu","year":"2018","journal-title":"Arch. Appl. Mech."},{"year":"2016","series-title":"Analyzing the Tensile, Compressive, and Flexural Properties of 3D Printed ABS P430 Plastic Based on Printing Orientation Using Fused Deposition Modeling","author":"Hernandez","key":"10.1016\/j.camwa.2024.09.019_br0400"},{"issue":"5","key":"10.1016\/j.camwa.2024.09.019_br0410","first-page":"1","article-title":"The comparison of the mechanical characteristics of ABS using three different plastic production techniques","volume":"10","author":"Shaik","year":"2023","journal-title":"Open Access Libr. J."},{"author":"3D Systems","key":"10.1016\/j.camwa.2024.09.019_br0420"},{"issue":"4","key":"10.1016\/j.camwa.2024.09.019_br0430","doi-asserted-by":"crossref","first-page":"2049","DOI":"10.1007\/s11831-023-10043-w","article-title":"Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review","volume":"31","author":"Kazemi","year":"2024","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.camwa.2024.09.019_br0440","article-title":"Machine-learning methods for estimating performance of structural concrete members reinforced with fiber-reinforced polymers","author":"Kazemi","year":"2024","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.camwa.2024.09.019_br0450","first-page":"1","article-title":"Chained machine learning model for predicting load capacity and ductility of steel fiber\u2013reinforced concrete beams","author":"Shafighfard","year":"2024","journal-title":"Comput. Civ. Infrastruct. Eng."},{"key":"10.1016\/j.camwa.2024.09.019_br0460","article-title":"Energy consumption optimization in wastewater treatment plants: machine learning for monitoring incineration of sewage sludge","volume":"56","author":"Adibimanesh","year":"2023","journal-title":"Sustain. Energy Technol. Assess."},{"key":"10.1016\/j.camwa.2024.09.019_br0480","doi-asserted-by":"crossref","DOI":"10.1016\/j.fuel.2024.131346","article-title":"Enhancing biomass pyrolysis: predictive insights from process simulation integrated with interpretable machine learning models","volume":"366","author":"Chinenye Divine","year":"2024","journal-title":"Fuel"},{"issue":"1","key":"10.1016\/j.camwa.2024.09.019_br0490","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1007\/s12155-023-10681-9","article-title":"Machine learning model for the evaluation of biomethane potential based on the biochemical composition of biomass","volume":"17","author":"Adeleke","year":"2024","journal-title":"BioEnergy Res."}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122124004279?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122124004279?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T00:49:51Z","timestamp":1732668591000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122124004279"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":48,"alternative-id":["S0898122124004279"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2024.09.019","relation":{},"ISSN":["0898-1221"],"issn-type":[{"type":"print","value":"0898-1221"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A hybrid model for accurate prediction of composite longitudinal elastic modulus","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2024.09.019","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}]}}