{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T05:54:55Z","timestamp":1721973295847},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100007128","name":"Shaanxi Province Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007128","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100015401","name":"Key Research and Development Projects of Shaanxi Province","doi-asserted-by":"publisher","award":["2023-YBSF-399"],"id":[{"id":"10.13039\/501100015401","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["12271426"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002412","name":"Xi\u2019an Jiaotong University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002412","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.camwa.2023.04.007","type":"journal-article","created":{"date-parts":[[2023,4,21]],"date-time":"2023-04-21T17:22:01Z","timestamp":1682097721000},"page":"48-63","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["On a second-order decoupled time-stepping scheme for solving a finite element problem for the approximation of Peterlin viscoelastic model"],"prefix":"10.1016","volume":"142","author":[{"given":"Wei-Wei","family":"Han","sequence":"first","affiliation":[]},{"given":"Yao-Lin","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Zhen","family":"Miao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2023.04.007_br0010","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.na.2015.03.001","article-title":"Global existence and uniqueness result for the diffusive Peterlin viscoelastic model","volume":"120","author":"Luk\u00e1\u010dov\u00e1-Medvid'ov\u00e1","year":"2015","journal-title":"Nonlinear Anal."},{"issue":"17\u201318","key":"10.1016\/j.camwa.2023.04.007_br0020","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1016\/j.jnnfm.2011.05.008","article-title":"Weakly-imposed Dirichlet boundary conditions for non-Newtonian fluid flow","volume":"166","author":"Baltussen","year":"2011","journal-title":"J. Non-Newton. Fluid Mech."},{"key":"10.1016\/j.camwa.2023.04.007_br0030","series-title":"Mechanical Behavior of Materials","author":"Meyers","year":"2008"},{"key":"10.1016\/j.camwa.2023.04.007_br0040","series-title":"Mathematical Analysis of Viscoelastic Flows","author":"Renardy","year":"2000"},{"issue":"4","key":"10.1016\/j.camwa.2023.04.007_br0050","doi-asserted-by":"crossref","first-page":"2950","DOI":"10.1137\/16M1068505","article-title":"Global existence result for the generalized Peterlin viscoelastic model","volume":"49","author":"Lukacova-Medvidova","year":"2017","journal-title":"SIAM J. Math. Anal."},{"issue":"5","key":"10.1016\/j.camwa.2023.04.007_br0060","article-title":"Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, part I: A nonlinear scheme","volume":"51","author":"Luk\u00e1ov\u00e1-Medvid'ov\u00e1","year":"2016","journal-title":"ESAIM: Math. Model. Numer. Anal."},{"issue":"5","key":"10.1016\/j.camwa.2023.04.007_br0070","doi-asserted-by":"crossref","first-page":"1663","DOI":"10.1051\/m2an\/2017032","article-title":"Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method. Part II: a linear scheme","volume":"51","author":"Luk\u00e1\u010dov\u00e1-Medvid'ov\u00e1","year":"2017","journal-title":"ESAIM: Math. Model. Numer. Anal."},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0080","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1515\/cmam-2017-0021","article-title":"Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model","volume":"18","author":"Jiang","year":"2018","journal-title":"Comput. Methods Appl. Math."},{"issue":"13","key":"10.1016\/j.camwa.2023.04.007_br0090","doi-asserted-by":"crossref","first-page":"1611","DOI":"10.1080\/01630563.2020.1789165","article-title":"Analysis of stabilized Crank-Nicolson time-stepping scheme for the evolutionary Peterlin viscoelastic model","volume":"41","author":"Ravindran","year":"2020","journal-title":"Numer. Funct. Anal. Optim."},{"key":"10.1016\/j.camwa.2023.04.007_br0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.apnum.2017.03.010","article-title":"Unconditional error estimates for time dependent viscoelastic fluid flow","volume":"119","author":"Zheng","year":"2017","journal-title":"Appl. Numer. Math."},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0110","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1137\/S003614290241177X","article-title":"Approximation of time-dependent viscoelastic fluid flow: SUPG approximation","volume":"41","author":"Ervin","year":"2003","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.camwa.2023.04.007_br0120","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/0377-0257(95)01372-3","article-title":"A new mixed finite element method for computing viscoelastic flows","volume":"60","author":"Gu\u00e9nette","year":"1995","journal-title":"J. Non-Newton. Fluid Mech."},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0130","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/s002110050167","article-title":"On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow","volume":"72","author":"Najib","year":"1995","journal-title":"Numer. Math."},{"issue":"1","key":"10.1016\/j.camwa.2023.04.007_br0140","first-page":"87","article-title":"Analysis of a second-order decoupled time-stepping scheme for transient viscoelastic flow","volume":"17","author":"Ravindran","year":"2020","journal-title":"Int. J. Numer. Anal. Model."},{"key":"10.1016\/j.camwa.2023.04.007_br0150","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.apnum.2020.08.014","article-title":"Unconditional optimal error estimates of linearized second-order BDF Galerkin FEMs for the Landau-Lifshitz equation","volume":"159","author":"Yang","year":"2021","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.camwa.2023.04.007_br0160","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.camwa.2022.05.014","article-title":"Error analysis of the second-order BDF finite element scheme for the thermally coupled incompressible magnetohydrodynamic system","volume":"118","author":"Tang","year":"2022","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2023.04.007_br0170","series-title":"Sobolev Spaces","author":"Adams","year":"2003"},{"key":"10.1016\/j.camwa.2023.04.007_br0180","series-title":"Navier-Stokes Equations and Nonlinear Functional Analysis","author":"Temam","year":"1995"},{"key":"10.1016\/j.camwa.2023.04.007_br0190","series-title":"Finite Element Methods for Navier-Stokes Equations","author":"Raviart","year":"2012"},{"key":"10.1016\/j.camwa.2023.04.007_br0200","series-title":"The Finite Element Method for Elliptic Problems","author":"Ciarlet","year":"2002"},{"key":"10.1016\/j.camwa.2023.04.007_br0210","series-title":"The Mathematical Theory of Finite Element Methods","author":"Scott","year":"2008"},{"issue":"1","key":"10.1016\/j.camwa.2023.04.007_br0220","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/0045-7930(73)90027-3","article-title":"A numerical solution of the Navier-Stokes equations using the finite element technique","volume":"1","author":"Taylor","year":"2017","journal-title":"Comput. Fluids"},{"issue":"4","key":"10.1016\/j.camwa.2023.04.007_br0230","doi-asserted-by":"crossref","first-page":"1461","DOI":"10.1137\/100794250","article-title":"A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood fe approximations of the Navier-Stokes equations","volume":"49","author":"Case","year":"2011","journal-title":"SIAM J. Numer. Anal."},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0240","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1137\/0727022","article-title":"Finite-element approximation of the nonstationary Navier-Stokes problem part IV: error analysis for second-order time discretization","volume":"27","author":"Rannacher","year":"1990","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2023.04.007_br0250","series-title":"Numerical Approximation of Partial Differential Equations, vol. 23","author":"Quarteroni","year":"2008"},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0260","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1137\/0719018","article-title":"Finite element approximation of the nonstationary Navier\u2013Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization","volume":"19","author":"Heywood","year":"1982","journal-title":"SIAM J. Numer. Anal."},{"issue":"2","key":"10.1016\/j.camwa.2023.04.007_br0270","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.apnum.2011.10.006","article-title":"Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations","volume":"62","author":"Layton","year":"2012","journal-title":"Appl. Numer. Math."},{"issue":"3\u20134","key":"10.1016\/j.camwa.2023.04.007_br0280","first-page":"251","article-title":"New development in Freefem++","volume":"20","author":"Hecht","year":"2012","journal-title":"J. Numer. Math."},{"key":"10.1016\/j.camwa.2023.04.007_br0290","series-title":"Analysis and numerical solution of the Peterlin viscoelastic model","author":"Mizerov\u00e1","year":"2015"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122123001438?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122123001438?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,22]],"date-time":"2024-04-22T20:31:08Z","timestamp":1713817868000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122123001438"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":29,"alternative-id":["S0898122123001438"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2023.04.007","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On a second-order decoupled time-stepping scheme for solving a finite element problem for the approximation of Peterlin viscoelastic model","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2023.04.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}