{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T15:33:08Z","timestamp":1720452788019},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.camwa.2022.04.016","type":"journal-article","created":{"date-parts":[[2022,5,30]],"date-time":"2022-05-30T10:38:04Z","timestamp":1653907084000},"page":"56-73","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["A higher-order finite difference method for two-dimensional singularly perturbed reaction-diffusion with source-term-discontinuous problem"],"prefix":"10.1016","volume":"118","author":[{"given":"Aarthika","family":"K","sequence":"first","affiliation":[]},{"given":"Ram","family":"Shiromani","sequence":"additional","affiliation":[]},{"given":"V.","family":"Shanthi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2022.04.016_br0010","series-title":"Singular-Perturbation Theory: an Introduction with Applications","author":"Smith","year":"1985"},{"key":"10.1016\/j.camwa.2022.04.016_br0020","series-title":"Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering","author":"Johnson","year":"2006"},{"key":"10.1016\/j.camwa.2022.04.016_br0030","series-title":"Convection-Diffusion Problems, Vol. 196","author":"Stynes","year":"2018"},{"key":"10.1016\/j.camwa.2022.04.016_br0040","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.camwa.2020.12.011","article-title":"The finite volume element method on the shishkin mesh for a singularly perturbed reaction\u2013diffusion problem","volume":"84","author":"Wang","year":"2021","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2022.04.016_br0050","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.cam.2017.11.026","article-title":"Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter","volume":"354","author":"Das","year":"2019","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2022.04.016_br0060","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.apnum.2019.08.028","article-title":"Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature","volume":"148","author":"Das","year":"2020","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.camwa.2022.04.016_br0070","article-title":"A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction\u2013diffusion problems with arbitrary small diffusion terms","author":"Shakti","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2022.04.016_br0080","doi-asserted-by":"crossref","DOI":"10.1002\/mma.7358","article-title":"A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems","author":"Kumar","year":"2021","journal-title":"Math. Methods Appl. Sci."},{"key":"10.1016\/j.camwa.2022.04.016_br0090","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.camwa.2021.08.011","article-title":"A staggered discontinuous galerkin method for elliptic problems on rectangular grids","volume":"99","author":"Kim","year":"2021","journal-title":"Comput. Math. Appl."},{"issue":"14","key":"10.1016\/j.camwa.2022.04.016_br0100","doi-asserted-by":"crossref","first-page":"5359","DOI":"10.1002\/mma.5067","article-title":"Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data","volume":"41","author":"Chandru","year":"2018","journal-title":"Math. Methods Appl. Sci."},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0110","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1007\/s12591-017-0385-3","article-title":"A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms","volume":"27","author":"Chandru","year":"2019","journal-title":"Differ. Equ. Dyn. Syst."},{"issue":"4","key":"10.1016\/j.camwa.2022.04.016_br0120","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1017\/S0022112062000890","article-title":"Magnetohydrodynamic pipe flow Part2. High Hartmann number","volume":"13","author":"Shercliff","year":"1962","journal-title":"J. Fluid Mech."},{"key":"10.1016\/j.camwa.2022.04.016_br0130","series-title":"Wind-Driven Ocean Circulation: a Collection of Theoretical Studies","author":"Robinson","year":"1963"},{"key":"10.1016\/j.camwa.2022.04.016_br0140","series-title":"Elliptic Partial Differential Equations, Vol. 1","author":"Volpert","year":"2011"},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0150","first-page":"631","article-title":"Numerical solution of a two-dimensional singularly perturbed reaction-diffusion problem with discontinuous coefficients","volume":"182","author":"Brayanov","year":"2006","journal-title":"Appl. Math. Comput."},{"issue":"252","key":"10.1016\/j.camwa.2022.04.016_br0160","doi-asserted-by":"crossref","first-page":"1743","DOI":"10.1090\/S0025-5718-05-01762-X","article-title":"A parameter robust numerical method for a two dimensional reaction-diffusion problem","volume":"74","author":"Clavero","year":"2005","journal-title":"Math. Comput."},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0170","first-page":"75","article-title":"Higher order numerical methods for singularly perturbed elliptic problems","volume":"18","author":"Munyakazi","year":"2010","journal-title":"Neural Parallel Sci. Comput."},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0180","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.cam.2005.04.056","article-title":"A compact finite difference scheme for 2d reaction\u2013diffusion singularly perturbed problems","volume":"192","author":"Gracia","year":"2006","journal-title":"J. Comput. Appl. Math."},{"issue":"2","key":"10.1016\/j.camwa.2022.04.016_br0190","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1137\/0521022","article-title":"Differentiability properties of solutions of the equation -\u03b5\u03022\u03b4u+ru=f(x,y) in a square","volume":"21","author":"Han","year":"1990","journal-title":"SIAM J. Math. Anal."},{"issue":"10","key":"10.1016\/j.camwa.2022.04.016_br0200","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/S0898-1221(97)00073-4","article-title":"Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem","volume":"33","author":"Li","year":"1997","journal-title":"Comput. Math. Appl."},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0210","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1137\/070700267","article-title":"Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions","volume":"47","author":"Lin","year":"2009","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.camwa.2022.04.016_br0220","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1002\/num.10034","article-title":"Uniform approximation of singularly perturbed reaction-diffusion problems by the finite element method on a shishkin mesh","volume":"19","author":"Xenophontos","year":"2003","journal-title":"Numer. Methods Partial Differ. Equ."},{"issue":"4","key":"10.1016\/j.camwa.2022.04.016_br0230","doi-asserted-by":"crossref","first-page":"986","DOI":"10.1093\/imanum\/drn048","article-title":"A two-scale sparse grid method for a singularly perturbed reaction\u2013diffusion problem in two dimensions","volume":"29","author":"Liu","year":"2009","journal-title":"IMA J. Numer. Anal."},{"issue":"2","key":"10.1016\/j.camwa.2022.04.016_br0240","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s00607-003-0009-3","article-title":"Numerical solution of a reaction-diffusion elliptic interface problem with strong anisotropy","volume":"71","author":"Braianov","year":"2003","journal-title":"Computing"},{"issue":"2","key":"10.1016\/j.camwa.2022.04.016_br0250","first-page":"824","article-title":"High-order finite difference schemes for elliptic problems with intersecting interfaces","volume":"187","author":"Angelova","year":"2007","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.camwa.2022.04.016_br0260","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1016\/j.matcom.2021.03.016","article-title":"Parameter-uniform numerical method for a two-dimensional singularly perturbed convection\u2013reaction\u2013diffusion problem with interior and boundary layers","volume":"187","author":"Rao","year":"2021","journal-title":"Math. Comput. Simul."},{"key":"10.1016\/j.camwa.2022.04.016_br0270","series-title":"Linear and Quasilinear Elliptic Equations","author":"Ladyzhenskaya","year":"1968"},{"key":"10.1016\/j.camwa.2022.04.016_br0280","first-page":"89","article-title":"Differentiability properties of solutions of boundary value problems for the laplace and poisson equations on a rectangle","volume":"77","author":"Volkov","year":"1965","journal-title":"Tr. Mat. Inst. Steklova"},{"key":"10.1016\/j.camwa.2022.04.016_br0290","series-title":"Mathematical Proceedings of the Royal Irish Academy","first-page":"173","article-title":"Fitted mesh methods for problems with parabolic boundary layers","author":"Miller","year":"1998"},{"key":"10.1016\/j.camwa.2022.04.016_br0300","series-title":"Robust Computational Techniques for Boundary Layers","author":"Farrell","year":"2000"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122122001729?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122122001729?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T14:26:44Z","timestamp":1678026404000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122122001729"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":30,"alternative-id":["S0898122122001729"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2022.04.016","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A higher-order finite difference method for two-dimensional singularly perturbed reaction-diffusion with source-term-discontinuous problem","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2022.04.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}