{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:14:25Z","timestamp":1726762465179},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.camwa.2021.07.021","type":"journal-article","created":{"date-parts":[[2021,8,12]],"date-time":"2021-08-12T05:00:10Z","timestamp":1628744410000},"page":"254-260","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Solving Poisson equation with Dirichlet conditions through multinode Shepard operators"],"prefix":"10.1016","volume":"98","author":[{"given":"Francesco","family":"Dell'Accio","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4638-2994","authenticated-orcid":false,"given":"Filomena","family":"Di Tommaso","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5728-883X","authenticated-orcid":false,"given":"Otheman","family":"Nouisser","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0403-6444","authenticated-orcid":false,"given":"Najoua","family":"Siar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2021.07.021_br0010","series-title":"Partial Differential Equations for Scientists and Engineers","author":"Farlow","year":"1993"},{"issue":"2","key":"10.1016\/j.camwa.2021.07.021_br0020","article-title":"Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations","volume":"2","author":"Sarra","year":"2009","journal-title":"Adv. Comput. Mech."},{"issue":"3","key":"10.1016\/j.camwa.2021.07.021_br0030","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/S0955-7997(02)00081-4","article-title":"A comparison of efficiency and error convergence of multiquadric collocation method and finite element method","volume":"27","author":"Li","year":"2003","journal-title":"Eng. Anal. Bound. Elem."},{"issue":"8","key":"10.1016\/j.camwa.2021.07.021_br0040","doi-asserted-by":"crossref","first-page":"1905","DOI":"10.1029\/JB076i008p01905","article-title":"Multiquadric equations of topography and other irregular surfaces","volume":"76","author":"Hardy","year":"1971","journal-title":"J. Geophys. Res."},{"key":"10.1016\/j.camwa.2021.07.021_br0050","article-title":"Spatial Variation","volume":"vol. 36","author":"Mat\u00e9rn","year":"1986"},{"issue":"8\u20139","key":"10.1016\/j.camwa.2021.07.021_br0060","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0898-1221(90)90270-T","article-title":"Multiquadrics\u2014a scattered data approximation scheme with applications to computational fluid-dynamics\u2014I surface approximations and partial derivative estimates","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput. Math. Appl."},{"issue":"8\u20139","key":"10.1016\/j.camwa.2021.07.021_br0070","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/0898-1221(90)90271-K","article-title":"Multiquadrics\u2014a scattered data approximation scheme with applications to computational fluid-dynamics\u2014II solutions to parabolic, hyperbolic and elliptic partial differential equations","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput. Math. Appl."},{"issue":"3\u20135","key":"10.1016\/j.camwa.2021.07.021_br0080","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1016\/S0898-1221(01)00297-8","article-title":"Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary","volume":"43","author":"Fedoseyev","year":"2002","journal-title":"Comput. Math. Appl."},{"issue":"01","key":"10.1016\/j.camwa.2021.07.021_br0090","doi-asserted-by":"crossref","DOI":"10.1142\/S1758825116500071","article-title":"Investigation of radial basis collocation method for incremental-iterative analysis","volume":"8","author":"Yang","year":"2016","journal-title":"Int. J. Appl. Mech."},{"issue":"3","key":"10.1016\/j.camwa.2021.07.021_br0100","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1002\/num.20539","article-title":"Error analysis of collocation method based on reproducing kernel approximation","volume":"27","author":"Hu","year":"2011","journal-title":"Numer. Methods Partial Differ. Equ."},{"key":"10.1016\/j.camwa.2021.07.021_br0110","series-title":"A study on convergence and complexity of reproducing kernel collocation method","first-page":"189","author":"Hu","year":"2009"},{"issue":"13","key":"10.1016\/j.camwa.2021.07.021_br0120","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1002\/nme.4432","article-title":"A gradient reproducing kernel collocation method for boundary value problems","volume":"93","author":"Chi","year":"2013","journal-title":"Int. J. Numer. Methods Eng."},{"issue":"03","key":"10.1016\/j.camwa.2021.07.021_br0130","doi-asserted-by":"crossref","DOI":"10.1142\/S1758825116500307","article-title":"Weighted reproducing kernel collocation method and error analysis for inverse Cauchy problems","volume":"8","author":"Yang","year":"2016","journal-title":"Int. J. Appl. Mech."},{"issue":"05","key":"10.1016\/j.camwa.2021.07.021_br0140","doi-asserted-by":"crossref","DOI":"10.1142\/S175882511750065X","article-title":"Solving inverse Laplace equation with singularity by weighted reproducing kernel collocation method","volume":"9","author":"Yang","year":"2017","journal-title":"Int. J. Appl. Mech."},{"issue":"9","key":"10.1016\/j.camwa.2021.07.021_br0150","doi-asserted-by":"crossref","DOI":"10.1142\/S1758825120501070","article-title":"Gradient enhanced localized radial basis collocation method for inverse analysis of Cauchy problems","volume":"12","author":"Yang","year":"2020","journal-title":"Int. J. Appl. Mech."},{"key":"10.1016\/j.camwa.2021.07.021_br0160","first-page":"281","article-title":"Application of cardinal radial basis interpolation operators to numerical solution of the Poisson equation","volume":"24","author":"Allasia","year":"2004","journal-title":"Rend. Mat. Appl. (7)"},{"key":"10.1016\/j.camwa.2021.07.021_br0170","series-title":"Proceedings of the 1968 23rd ACM National Conference","first-page":"517","article-title":"A two-dimensional interpolation function for irregularly-spaced data","author":"Shepard","year":"1968"},{"key":"10.1016\/j.camwa.2021.07.021_br0180","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.amc.2017.05.060","article-title":"Reconstruction of a function from Hermite\u2013Birkhoff data","volume":"318","author":"Dell'Accio","year":"2018","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.camwa.2021.07.021_br0190","series-title":"Surfaces in Computer Aided Geometric Design","first-page":"99","article-title":"Convex combination surfaces","volume":"vol. 1479","author":"Little","year":"1983"},{"issue":"1","key":"10.1016\/j.camwa.2021.07.021_br0200","first-page":"359","article-title":"On the approximation order of triangular Shepard interpolation","volume":"36","author":"Dell'Accio","year":"2015","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.camwa.2021.07.021_br0210","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.cam.2018.03.012","article-title":"Fast computation of triangular Shepard interpolants","volume":"354","author":"Cavoretto","year":"2019","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2021.07.021_br0220","series-title":"A Course in Approximation Theory, vol. 101","author":"Cheney","year":"2009"},{"key":"10.1016\/j.camwa.2021.07.021_br0230","first-page":"365","article-title":"Properties of Shepard's surfaces","author":"Barnhill","year":"1983","journal-title":"Rocky Mt. J. Math."},{"key":"10.1016\/j.camwa.2021.07.021_br0240","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.apnum.2019.09.005","article-title":"On the hexagonal Shepard method","volume":"150","author":"Dell'Accio","year":"2020","journal-title":"Appl. Numer. Math."},{"issue":"1","key":"10.1016\/j.camwa.2021.07.021_br0250","article-title":"Rate of convergence of multinode Shepard operators","volume":"12","author":"Dell'Accio","year":"2019","journal-title":"Dolomites Res. Notes Approx."},{"key":"10.1016\/j.camwa.2021.07.021_br0260","article-title":"On the numerical computation of bivariate Lagrange polynomials","volume":"112","author":"Dell'Accio","year":"2021","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.camwa.2021.07.021_br0270","series-title":"Meshfree Approximation Methods with MATLAB, vol. 6","author":"Fasshauer","year":"2007"},{"key":"10.1016\/j.camwa.2021.07.021_br0280","doi-asserted-by":"crossref","DOI":"10.1016\/j.aml.2019.106178","article-title":"An adaptive LOOCV-based refinement scheme for RBF collocation methods over irregular domains","volume":"103","author":"Cavoretto","year":"2020","journal-title":"Appl. Math. Lett."},{"issue":"Special_Issue","key":"10.1016\/j.camwa.2021.07.021_br0290","article-title":"Scattered data interpolation by Shepard's like methods: classical results and recent advances","volume":"9","author":"Dell'Accio","year":"2016","journal-title":"Dolomites Res. Notes Approx."},{"issue":"5","key":"10.1016\/j.camwa.2021.07.021_br0300","doi-asserted-by":"crossref","first-page":"1984","DOI":"10.1137\/090779024","article-title":"Computing multivariate Fekete and Leja points by numerical linear algebra","volume":"48","author":"Bos","year":"2010","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.camwa.2021.07.021_br0310","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.camwa.2016.04.048","article-title":"A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems","volume":"72","author":"Rashidinia","year":"2016","journal-title":"Comput. Math. Appl."},{"issue":"1","key":"10.1016\/j.camwa.2021.07.021_br0320","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1137\/0112022","article-title":"The numerical solution of the Dirichlet problem for Laplace's equation by linear programming","volume":"12","author":"Cannon","year":"1964","journal-title":"J. Soc. Ind. Appl. Math."},{"key":"10.1016\/j.camwa.2021.07.021_br0330","series-title":"A First Course in the Numerical Analysis of Differential Equations, vol. 44","author":"Iserles","year":"2009"},{"issue":"3\u20135","key":"10.1016\/j.camwa.2021.07.021_br0340","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/S0898-1221(01)00292-9","article-title":"Multilevel compact radial functions based computational schemes for some elliptic problems","volume":"43","author":"Chen","year":"2002","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2021.07.021_br0350","series-title":"Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems","author":"LeVeque","year":"2007"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122121002844?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122121002844?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,7]],"date-time":"2023-11-07T03:08:41Z","timestamp":1699326521000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122121002844"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":35,"alternative-id":["S0898122121002844"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2021.07.021","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Solving Poisson equation with Dirichlet conditions through multinode Shepard operators","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2021.07.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}