{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T21:10:16Z","timestamp":1717276216148},"reference-count":56,"publisher":"Elsevier BV","issue":"8","license":[{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,10,15]],"date-time":"2022-10-15T00:00:00Z","timestamp":1665792000000},"content-version":"vor","delay-in-days":1475,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1016\/j.camwa.2018.07.041","type":"journal-article","created":{"date-parts":[[2018,8,23]],"date-time":"2018-08-23T01:19:02Z","timestamp":1534987142000},"page":"1950-1965","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"title":["A multilevel sparse kernel-based stochastic collocation finite element method for elliptic problems with random coefficients"],"prefix":"10.1016","volume":"76","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4083-6593","authenticated-orcid":false,"given":"Zhaonan","family":"Dong","sequence":"first","affiliation":[]},{"given":"Emmanuil H.","family":"Georgoulis","sequence":"additional","affiliation":[]},{"given":"Jeremy","family":"Levesley","sequence":"additional","affiliation":[]},{"given":"Fuat","family":"Usta","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b1","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1007\/s00211-005-0601-x","article-title":"Worst case scenario analysis for elliptic problems with uncertainty","volume":"101","author":"Babu\u0161ka","year":"2005","journal-title":"Numer. Math."},{"key":"10.1016\/j.camwa.2018.07.041_b2","first-page":"1","article-title":"N-term wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs","author":"Hoang","year":"2013","journal-title":"Math. Models Methods Appl. Sci."},{"issue":"01","key":"10.1016\/j.camwa.2018.07.041_b3","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1142\/S0219530511001728","article-title":"Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs","volume":"9","author":"Cohen","year":"2011","journal-title":"Anal. Appl."},{"issue":"5","key":"10.1016\/j.camwa.2018.07.041_b4","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1051\/m2an:2008027","article-title":"Sparse finite element approximation of high-dimensional transport-dominated diffusion problems","volume":"42","author":"Schwab","year":"2008","journal-title":"M2AN Math. Model. Numer. Anal."},{"key":"10.1016\/j.camwa.2018.07.041_b5","doi-asserted-by":"crossref","first-page":"2426","DOI":"10.1137\/110826539","article-title":"Convergence rates of multilevel and sparse tensor approximations for a random elliptic PDE","volume":"51(4)","author":"Gittelson","year":"2013","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2018.07.041_b6","first-page":"xvii+425","article-title":"Probability Theory I","volume":"vol. 45","author":"L\u00f2eve","year":"1977"},{"key":"10.1016\/j.camwa.2018.07.041_b7","first-page":"xvii+425","article-title":"Probability Theory II","volume":"vol. 46","author":"L\u00f2eve","year":"1978"},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b8","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1137\/S0036142902418680","article-title":"Galerkin finite element approximations of stochastic elliptic partial differential equations","volume":"42","author":"Babu\u0161ka","year":"2004","journal-title":"SIAM J. Numer. Anal."},{"issue":"2\u20135","key":"10.1016\/j.camwa.2018.07.041_b9","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.cma.2004.04.008","article-title":"Finite elements for elliptic problems with stochastic coefficients","volume":"194","author":"Frauenfelder","year":"2005","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"12\u201316","key":"10.1016\/j.camwa.2018.07.041_b10","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1016\/j.cma.2004.02.026","article-title":"Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation","volume":"194","author":"Babu\u0161ka","year":"2005","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.camwa.2018.07.041_b11","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1137\/050645142","article-title":"A stochastic collocation method for elliptic partial differential equations with random input data","volume":"45","author":"Babu\u0161ka","year":"2007","journal-title":"SIAM J. Numer. Anal."},{"issue":"6","key":"10.1016\/j.camwa.2018.07.041_b12","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1007\/s10208-010-9072-2","article-title":"Convergence rates of best n-term Galerkin approximations for a class of elliptic sPDEs","volume":"10","author":"Cohen","year":"2010","journal-title":"Found. Comput. Math."},{"issue":"5","key":"10.1016\/j.camwa.2018.07.041_b13","doi-asserted-by":"crossref","first-page":"2411","DOI":"10.1137\/070680540","article-title":"An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data","volume":"46","author":"Nobile","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"issue":"5","key":"10.1016\/j.camwa.2018.07.041_b14","doi-asserted-by":"crossref","first-page":"2309","DOI":"10.1137\/060663660","article-title":"A sparse grid stochastic collocation method for elliptic partial differential equations with random input data","volume":"46","author":"Nobile","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b15","doi-asserted-by":"crossref","first-page":"1046","DOI":"10.1137\/140969002","article-title":"A multilevel stochastic collocation method for partial differential equations with random input data","volume":"3","author":"Teckentrup","year":"2015","journal-title":"SIAM\/ASA J. Uncertain. Quant."},{"key":"10.1016\/j.camwa.2018.07.041_b16","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.cma.2016.03.029","article-title":"Multi-index stochastic collocation for random PDEs","volume":"306","author":"Haji-A","year":"2016","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"283","key":"10.1016\/j.camwa.2018.07.041_b17","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1090\/S0025-5718-2013-02654-3","article-title":"An adaptive stochastic Galerkin method for random elliptic operators","volume":"82","author":"Gittelson","year":"2013","journal-title":"Math. Comp."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b18","doi-asserted-by":"crossref","first-page":"A339","DOI":"10.1137\/130916849","article-title":"Energy norm a posteriori error estimation for parametric operator equations","volume":"36","author":"Bespalov","year":"2014","journal-title":"SIAM J. Sci. Comput."},{"issue":"4","key":"10.1016\/j.camwa.2018.07.041_b19","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1016\/j.camwa.2013.03.004","article-title":"Convergence of quasi-optimal stochastic Galerkin methods for a class of PDES with random coefficients","volume":"67","author":"Beck","year":"2014","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2018.07.041_b20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0962492915000033","article-title":"Approximation of high-dimensional parametric PDEs","volume":"24","author":"Cohen","year":"2015","journal-title":"Acta Numer."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b21","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s00211-011-0377-0","article-title":"Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients","volume":"119","author":"Barth","year":"2011","journal-title":"Numer. Math."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b22","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1137\/110853054","article-title":"Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods","volume":"51","author":"Charrier","year":"2013","journal-title":"SIAM J. Numer. Anal."},{"issue":"6","key":"10.1016\/j.camwa.2018.07.041_b23","doi-asserted-by":"crossref","first-page":"3351","DOI":"10.1137\/110845537","article-title":"Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients","volume":"50","author":"Kuo","year":"2012","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b24","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00791-011-0160-x","article-title":"Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients","volume":"14","author":"Cliffe","year":"2011","journal-title":"Comput. Vis. Sci."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b25","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1007\/s10208-014-9237-5","article-title":"Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients","volume":"15","author":"Kuo","year":"2015","journal-title":"Found. Comput. Math."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b26","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1007\/s00211-014-0689-y","article-title":"Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients","volume":"131","author":"Graham","year":"2015","journal-title":"Numer. Math."},{"issue":"3","key":"10.1016\/j.camwa.2018.07.041_b27","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1007\/s00211-013-0546-4","article-title":"Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients","volume":"125","author":"Teckentrup","year":"2013","journal-title":"Numer. Math."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b28","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1137\/140960086","article-title":"Multilevel Monte Carlo approximation of distribution functions and densities","volume":"3","author":"Giles","year":"2015","journal-title":"SIAM\/ASA J. Uncertain. Quant."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b29","doi-asserted-by":"crossref","first-page":"A815","DOI":"10.1137\/110859610","article-title":"Multilevel sparse kernel-based interpolation","volume":"35","author":"Georgoulis","year":"2013","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.camwa.2018.07.041_b30","series-title":"Parallel RBF Kernel-Based Stochastic Collocation for Large-Scale Random PDEs","author":"Zaspel","year":"2015"},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b31","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/0021-9045(82)90085-5","article-title":"d-Variate Boolean interpolation","volume":"34","author":"Delvos","year":"1982","journal-title":"J. Approx. Theory"},{"key":"10.1016\/j.camwa.2018.07.041_b32","unstructured":"M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid problems, 1992."},{"key":"10.1016\/j.camwa.2018.07.041_b33","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1017\/S0962492904000182","article-title":"Sparse grids","volume":"13","author":"Bungartz","year":"2004","journal-title":"Acta Numer."},{"key":"10.1016\/j.camwa.2018.07.041_b34","series-title":"Sparse Grids and Applications","first-page":"57","article-title":"Sparse grids in a nutshell","author":"Garcke","year":"2012"},{"issue":"12","key":"10.1016\/j.camwa.2018.07.041_b35","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.1016\/j.cma.2004.05.027","article-title":"Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations","volume":"194","author":"Matthies","year":"2005","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"4","key":"10.1016\/j.camwa.2018.07.041_b36","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.apnum.2011.06.015","article-title":"Sparse polynomial approximation in positive order Sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading","volume":"62","author":"Chernov","year":"2012","journal-title":"Appl. Numer. Math."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b37","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1093\/imanum\/drl025","article-title":"Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients","volume":"27","author":"Todor","year":"2007","journal-title":"IMA J. Numer. Anal."},{"issue":"37\u201338","key":"10.1016\/j.camwa.2018.07.041_b38","doi-asserted-by":"crossref","first-page":"4093","DOI":"10.1016\/S0045-7825(02)00354-7","article-title":"On solving elliptic stochastic partial differential equations","volume":"191","author":"Babu\u0161ka","year":"2002","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"5","key":"10.1016\/j.camwa.2018.07.041_b39","doi-asserted-by":"crossref","first-page":"3624","DOI":"10.1137\/080717924","article-title":"Approximating infinity-dimensional stochastic Darcy\u2019s equations without uniform ellipticity","volume":"47","author":"Galvis","year":"2009","journal-title":"SIAM J. Numer. Anal."},{"issue":"284","key":"10.1016\/j.camwa.2018.07.041_b40","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1090\/S0025-5718-2013-02692-0","article-title":"First order kth moment finite element analysis of nonlinear operator equations with stochastic data","volume":"82","author":"Chernov","year":"2013","journal-title":"Math. Comp."},{"key":"10.1016\/j.camwa.2018.07.041_b41","series-title":"The Mathematical Theory of Finite Element Methods, Vol. 15","author":"Brenner","year":"2008"},{"key":"10.1016\/j.camwa.2018.07.041_b42","first-page":"240","article-title":"Quadrature and interpolation of formulas for tensor product of certain classes of functions","volume":"4","author":"Smolyak","year":"1963","journal-title":"Soviet Math. Dokl."},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b43","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/0377-0427(95)00232-4","article-title":"Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight","volume":"71","author":"Genz","year":"1996","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b44","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.jeconom.2007.12.004","article-title":"Likelihood approximation by numerical integration on sparse grids","volume":"144","author":"Heiss","year":"2008","journal-title":"J. Econometrics"},{"key":"10.1016\/j.camwa.2018.07.041_b45","first-page":"x+336","article-title":"Scattered Data Approximation","volume":"vol. 17","author":"Wendland","year":"2005"},{"issue":"1","key":"10.1016\/j.camwa.2018.07.041_b46","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/BF02123482","article-title":"Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree","volume":"4","author":"Wendland","year":"1995","journal-title":"Adv. Comput. Math."},{"issue":"3","key":"10.1016\/j.camwa.2018.07.041_b47","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.jat.2009.08.004","article-title":"Error bounds for anisotropic RBF interpolation","volume":"162","author":"Beatson","year":"2010","journal-title":"J. Approx. Theory"},{"issue":"2","key":"10.1016\/j.camwa.2018.07.041_b48","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/BF02684411","article-title":"Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences","volume":"61","author":"Griebel","year":"1998","journal-title":"Computing"},{"issue":"1\u20133","key":"10.1016\/j.camwa.2018.07.041_b49","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s11075-004-3629-6","article-title":"Multilevel scattered data approximation by adaptive domain decomposition","volume":"39","author":"Iske","year":"2005","journal-title":"Numer. Algorithms"},{"issue":"3","key":"10.1016\/j.camwa.2018.07.041_b50","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1006\/acha.1999.0269","article-title":"Multilevel interpolation and approximation","volume":"7","author":"Narcowich","year":"1999","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"3","key":"10.1016\/j.camwa.2018.07.041_b51","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1007\/BF02432002","article-title":"Error estimates and condition numbers for radial basis function interpolation","volume":"3","author":"Schaback","year":"1995","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.camwa.2018.07.041_b52","series-title":"The Method of Smolyak in Multivariate Interpolation","author":"Schreiber","year":"2000"},{"key":"10.1016\/j.camwa.2018.07.041_b53","series-title":"Radial Basis Functions: Theory and Implementations, Vol. 12","author":"Buhmann","year":"2003"},{"issue":"4","key":"10.1016\/j.camwa.2018.07.041_b54","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1023\/A:1018977404843","article-title":"High dimensional polynomial interpolation on sparse grids","volume":"12","author":"Barthelmann","year":"2000","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.camwa.2018.07.041_b55","article-title":"Handbook of mathematical functions : with formulas, graphs, and mathematical tables","year":"1965"},{"issue":"489","key":"10.1016\/j.camwa.2018.07.041_b56","doi-asserted-by":"crossref","first-page":"579","DOI":"10.2307\/3618534","article-title":"An algebraic identity leading to Wilson\u2019s theorem","volume":"80","author":"Ruiz","year":"1996","journal-title":"Math. Gazette"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122118304127?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122118304127?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T20:53:34Z","timestamp":1717275214000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122118304127"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10]]},"references-count":56,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2018,10]]}},"alternative-id":["S0898122118304127"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2018.07.041","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2018,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A multilevel sparse kernel-based stochastic collocation finite element method for elliptic problems with random coefficients","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2018.07.041","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}