{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:21:39Z","timestamp":1732036899409},"reference-count":30,"publisher":"Elsevier BV","issue":"12","license":[{"start":{"date-parts":[[2017,12,1]],"date-time":"2017-12-01T00:00:00Z","timestamp":1512086400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,12,15]],"date-time":"2021-12-15T00:00:00Z","timestamp":1639526400000},"content-version":"vor","delay-in-days":1475,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Nature Science Foundation of China","doi-asserted-by":"publisher","award":["11626085"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Foundation for Young University Key Teacher by the Educational Department of Henan Province","award":["2014GGJS-021"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1016\/j.camwa.2017.08.023","type":"journal-article","created":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T12:15:14Z","timestamp":1504268114000},"page":"3195-3208","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":54,"title":["Stochastic Burgers\u2019 equation with fractional derivative driven by multiplicative noise"],"prefix":"10.1016","volume":"74","author":[{"given":"Guang-an","family":"Zou","sequence":"first","affiliation":[]},{"given":"Bo","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b1","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s00220-002-0704-5","article-title":"On the approximation of the stochastic Burgers\u2019 equation","volume":"230","author":"Gugg","year":"2002","journal-title":"Comm. Math. Phys."},{"issue":"2","key":"10.1016\/j.camwa.2017.08.023_b2","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/j.jfa.2006.09.010","article-title":"One-dimensional stochastic Burgers\u2019 equation driven by L\u00e9vy processes","volume":"243","author":"Dong","year":"2007","journal-title":"J. Funct. Anal."},{"issue":"4","key":"10.1016\/j.camwa.2017.08.023_b3","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1007\/s10955-013-0881-y","article-title":"Exponential ergodicity of stochastic Burgers\u2019 equations driven by \u03b1-stable processes","volume":"154","author":"Dong","year":"2014","journal-title":"J. Stat. Phys."},{"issue":"3","key":"10.1016\/j.camwa.2017.08.023_b4","doi-asserted-by":"crossref","first-page":"877","DOI":"10.2307\/121126","article-title":"Invariant measure for Burgers\u2019 equation with stochastic forcing","volume":"151","author":"Weinan","year":"2000","journal-title":"Ann. of Math."},{"key":"10.1016\/j.camwa.2017.08.023_b5","series-title":"Theory and Applications of Fractional Differential Equations","author":"Srivastava","year":"2006"},{"key":"10.1016\/j.camwa.2017.08.023_b6","series-title":"Waves and Stability in Continuous Media","article-title":"On the initial value problem for the fractional diffusion-wave equation","author":"Mainardi","year":"1994"},{"key":"10.1016\/j.camwa.2017.08.023_b7","doi-asserted-by":"crossref","first-page":"1161","DOI":"10.2298\/TSCI161216326Y","article-title":"Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems","volume":"3","author":"Yang","year":"2017","journal-title":"Therm. Sci."},{"key":"10.1016\/j.camwa.2017.08.023_b8","first-page":"4626940","article-title":"On coupled systems of time-fractional differential problems by using a new fractional derivative","volume":"2016","author":"Alsaedi","year":"2016","journal-title":"J. Funct. Space."},{"key":"10.1016\/j.camwa.2017.08.023_b9","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.physa.2017.04.054","article-title":"A new fractional operator of variable order: application in the description of anomalous diffusion","volume":"481","author":"Yang","year":"2017","journal-title":"Physica A"},{"issue":"6","key":"10.1016\/j.camwa.2017.08.023_b10","doi-asserted-by":"crossref","first-page":"061017","DOI":"10.1115\/1.4034432","article-title":"Fractional differential equations with dependence on the Caputo-Katugampola derivative","volume":"11","author":"Almeida","year":"2016","journal-title":"J. Comput. Nonlinear Dyn."},{"key":"10.1016\/j.camwa.2017.08.023_b11","series-title":"Local Fractional Integral Transforms and their Applications","author":"Yang","year":"2015"},{"key":"10.1016\/j.camwa.2017.08.023_b12","unstructured":"Z. Brze\u017aniak, L. Debbi, B. Goldys, Ergodic properties of fractional stochastic Burgers\u2019 equation,2011, arXiv preprint arXiv:1106.1918."},{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b13","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s11071-015-2085-2","article-title":"Nonlinear dynamics for local fractional Burgers\u2019 equation arising in fractal flow","volume":"84","author":"Yang","year":"2016","journal-title":"Nonlinear Dynam."},{"issue":"2","key":"10.1016\/j.camwa.2017.08.023_b14","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.camwa.2016.11.012","article-title":"Exact travelling wave solutions for the local fractional two-dimensional Burgers\u2019-type equations","volume":"73","author":"Yang","year":"2017","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2017.08.023_b15","series-title":"Nonlinear Wave Motion","first-page":"162","article-title":"Generalized Burgers\u2019 equations and fractional calculus","author":"Sugimoto","year":"1991"},{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b16","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.jde.2011.08.048","article-title":"Abstract fractional Cauchy problems with almost sectorial operators","volume":"252","author":"Wang","year":"2012","journal-title":"J. Differential Equations"},{"key":"10.1016\/j.camwa.2017.08.023_b17","doi-asserted-by":"crossref","first-page":"2948","DOI":"10.1016\/j.jde.2015.04.008","article-title":"Mild solutions to the time fractional Navier-Stokes equations in RN","volume":"259","author":"De Carvalho-Neto","year":"2015","journal-title":"J. Differential Equations"},{"issue":"6","key":"10.1016\/j.camwa.2017.08.023_b18","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1016\/j.camwa.2016.03.026","article-title":"On the time-fractional Navier-Stokes equations","volume":"73","author":"Zhou","year":"2017","journal-title":"Comput. Math. Appl."},{"issue":"2","key":"10.1016\/j.camwa.2017.08.023_b19","doi-asserted-by":"crossref","first-page":"753","DOI":"10.2298\/TSCI151224222Y","article-title":"A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow","volume":"20","author":"Yang","year":"2016","journal-title":"Therm. Sci."},{"key":"10.1016\/j.camwa.2017.08.023_b20","series-title":"Advanced Local Fractional Calculus and Its Applications","author":"Yang","year":"2012"},{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b21","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s00021-015-0234-5","article-title":"Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains","volume":"18","author":"Debbi","year":"2016","journal-title":"J. Math. Fluid Mech."},{"key":"10.1016\/j.camwa.2017.08.023_b22","series-title":"Stochastic Differential Equations: Theorem and Applications Interdiscip Math. Sci. Vol. 2","first-page":"135","article-title":"On stochastic Burgers\u2019 equation driven by a fractional Laplacian and space-time white noise","author":"Brze\u017aniak","year":"2007"},{"issue":"2","key":"10.1016\/j.camwa.2017.08.023_b23","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/s11118-015-9506-1","article-title":"m-Dissipativity for Kolmogorov operator of a fractional Burgers\u2019 equation with space-time white noise","volume":"44","author":"Yang","year":"2016","journal-title":"Potential Anal."},{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b24","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.jmaa.2016.12.011","article-title":"Martingale and weak solutions for a stochastic nonlocal Burgers\u2019 equation on finite intervals","volume":"449","author":"Lv","year":"2017","journal-title":"J. Math. Anal. Appl."},{"issue":"1","key":"10.1016\/j.camwa.2017.08.023_b25","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1016\/j.jmaa.2008.04.007","article-title":"The approximate and exact solutions of the space- and time-fractional Burgers\u2019 equations with initial conditions by variational iteration method","volume":"345","author":"Inc","year":"2008","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.camwa.2017.08.023_b26","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1016\/j.chaos.2005.09.002","article-title":"Non-perturbative analytical solutions of the space- and time-fractional Burgers\u2019 equations","volume":"28","author":"Momani","year":"2006","journal-title":"Chaos Solitons Fractals"},{"key":"10.1016\/j.camwa.2017.08.023_b27","series-title":"Strong and Weak Approximation of Semilinear Stochastic Evolution Equations","author":"Kruse","year":"2014"},{"key":"10.1016\/j.camwa.2017.08.023_b28","doi-asserted-by":"crossref","first-page":"660","DOI":"10.1016\/j.camwa.2011.11.024","article-title":"Approximate controllability of fractional stochastic evolution equations","volume":"63","author":"Sakthivel","year":"2012","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2017.08.023_b29","doi-asserted-by":"crossref","first-page":"1063","DOI":"10.1016\/j.camwa.2009.06.026","article-title":"Existence of mild solutions for fractional neutral evolution equations","volume":"59","author":"Zhou","year":"2010","journal-title":"Comput. Math. Appl."},{"issue":"6","key":"10.1016\/j.camwa.2017.08.023_b30","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/0893-9659(96)00089-4","article-title":"The fundamental solutions for the fractional diffusion-wave equation","volume":"9","author":"Mainardi","year":"1996","journal-title":"Appl. Math. Lett."}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122117305151?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122117305151?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,12,15]],"date-time":"2021-12-15T02:33:01Z","timestamp":1639535581000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122117305151"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12]]},"references-count":30,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2017,12]]}},"alternative-id":["S0898122117305151"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2017.08.023","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2017,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Stochastic Burgers\u2019 equation with fractional derivative driven by multiplicative noise","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2017.08.023","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}