{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T21:14:07Z","timestamp":1724966047742},"reference-count":26,"publisher":"Elsevier BV","issue":"3","license":[{"start":{"date-parts":[[2017,8,1]],"date-time":"2017-08-01T00:00:00Z","timestamp":1501545600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11671323"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004602","name":"Program for New Century Excellent Talents in University","doi-asserted-by":"crossref","award":["NCET-12-0922)."],"id":[{"id":"10.13039\/501100004602","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2017,8]]},"DOI":"10.1016\/j.camwa.2017.04.018","type":"journal-article","created":{"date-parts":[[2017,6,20]],"date-time":"2017-06-20T16:15:20Z","timestamp":1497975320000},"page":"369-384","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"title":["Hybrid Laplace transform and finite difference methods for pricing American options under complex models"],"prefix":"10.1016","volume":"74","author":[{"given":"Jingtang","family":"Ma","sequence":"first","affiliation":[]},{"given":"Zhiqiang","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9429-7121","authenticated-orcid":false,"given":"Zhenyu","family":"Cui","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2017.04.018_b1","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1287\/mnsc.1040.0275","article-title":"Anniversary article: option pricing: valuation models and applications","volume":"50","author":"Broadie","year":"2004","journal-title":"Manage. Sci."},{"key":"10.1016\/j.camwa.2017.04.018_b2","series-title":"American-Style Derivatives: Valuation and Computation","author":"Detemple","year":"2005"},{"key":"10.1016\/j.camwa.2017.04.018_b3","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1111\/j.1540-6261.2012.01752.x","article-title":"Early exercise of put options on stocks","volume":"67","author":"Barraclough","year":"2012","journal-title":"J. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b4","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1287\/mnsc.1120.1561","article-title":"Market crashes, correlated illiquidity, and portfolio Choice","volume":"59","author":"Liu","year":"2013","journal-title":"Manage. Sci."},{"key":"10.1016\/j.camwa.2017.04.018_b5","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/0304-405X(76)90022-2","article-title":"Option pricing when the underlying stock returns are discontinuous","volume":"3","author":"Merton","year":"1976","journal-title":"J. Financ. Econ."},{"key":"10.1016\/j.camwa.2017.04.018_b6","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1287\/mnsc.48.8.1086.166","article-title":"A jump-diffusion model for option pricing","volume":"48","author":"Kou","year":"2002","journal-title":"Manage. Sci."},{"key":"10.1016\/j.camwa.2017.04.018_b7","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.spa.2003.07.005","article-title":"Russian and American put options under exponential phase-type L\u00e9vy models","volume":"109","author":"Asmussen","year":"2004","journal-title":"Stochastic Process. Appl."},{"key":"10.1016\/j.camwa.2017.04.018_b8","first-page":"149","article-title":"Asset with jumps","volume":"15","author":"Lipton","year":"2002","journal-title":"Risk Mag."},{"key":"10.1016\/j.camwa.2017.04.018_b9","doi-asserted-by":"crossref","first-page":"2067","DOI":"10.1287\/mnsc.1110.1393","article-title":"Option pricing under a mixed-exponential jump diffusion model","volume":"57","author":"Cai","year":"2011","journal-title":"Manage. Sci."},{"key":"10.1016\/j.camwa.2017.04.018_b10","doi-asserted-by":"crossref","first-page":"357","DOI":"10.2307\/1912559","article-title":"A new approach to the economic analysis of nonstationary time series and the business cycle","volume":"57","author":"Hamilton","year":"1989","journal-title":"Ecomometrica"},{"key":"10.1016\/j.camwa.2017.04.018_b11","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1142\/S0219024902001523","article-title":"American options with regime switching","volume":"5","author":"Buffington","year":"2002","journal-title":"Int. J. Theor. Appl. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b12","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1142\/S0219024909005245","article-title":"New numerical scheme for pricing American option with regime-switching","volume":"12","author":"Khaliq","year":"2009","journal-title":"Int. J. Theor. Appl. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b13","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1002\/num.21714","article-title":"Solving Complex PDE systems for pricing American options with regime-switching by efficient exponential time differencing schemes","volume":"29","author":"Khaliq","year":"2013","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.camwa.2017.04.018_b14","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1111\/1540-6261.00544","article-title":"The finite moment log stable process and option pricing","volume":"58","author":"Carr","year":"2003","journal-title":"J. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b15","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1090\/S0033-569X-2014-01373-2","article-title":"Analytically pricing European-style options under the modified black-scholes equation with a spatial-fractional derivative","volume":"72","author":"Chen","year":"2014","journal-title":"Q. Appl. Math."},{"key":"10.1016\/j.camwa.2017.04.018_b16","series-title":"Mathematical Models of Financial Derivatives","author":"Kwok","year":"1998"},{"key":"10.1016\/j.camwa.2017.04.018_b17","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1080\/13504860110060384","article-title":"Laplace transform and American options","volume":"7","author":"Mallier","year":"2000","journal-title":"Appl. Math. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b18","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1142\/S0219024906003962","article-title":"A new analytical approximation formula for the optimal exercise boundary of the American put options","volume":"7","author":"Zhu","year":"2006","journal-title":"Int. J. Theor. Appl. Finance"},{"key":"10.1016\/j.camwa.2017.04.018_b19","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.orl.2010.07.006","article-title":"Valuing American options under the CEV model by Laplace-Carson transforms","volume":"38","author":"Wong","year":"2010","journal-title":"Oper. Res. Lett."},{"key":"10.1016\/j.camwa.2017.04.018_b20","doi-asserted-by":"crossref","unstructured":"M. Leippold, N. Vasiljevi\u0107, Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model, 2015. Online at http:\/\/ssrn.com\/abstract=2571208","DOI":"10.2139\/ssrn.2571208"},{"key":"10.1016\/j.camwa.2017.04.018_b21","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1137\/080712519","article-title":"Analysis of the optimal exercise boundary of American option for jump diffusion","volume":"41","author":"Bayraktar","year":"2009","journal-title":"SIAM J. Math. Anal."},{"key":"10.1016\/j.camwa.2017.04.018_b22","doi-asserted-by":"crossref","first-page":"1821","DOI":"10.1016\/j.cam.2009.09.019","article-title":"Option pricing with regime switching by trinomial tree method","volume":"233","author":"Yuen","year":"2010","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2017.04.018_b23","doi-asserted-by":"crossref","first-page":"15","DOI":"10.3905\/jpm.1996.015","article-title":"Notes on option pricing I: constant elasticity of variance diffusions","volume":"22","author":"Cox","year":"1996","journal-title":"J. Portfolio Manage."},{"key":"10.1016\/j.camwa.2017.04.018_b24","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.camwa.2002.10.017","article-title":"Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion","volume":"48","author":"Valk\u00f3","year":"2004","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2017.04.018_b25","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.cam.2016.03.030","article-title":"On convergence of Laplace inversion for the American put option under the CEV model","volume":"305","author":"Jo","year":"2016","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2017.04.018_b26","doi-asserted-by":"crossref","first-page":"3520","DOI":"10.1016\/j.jedc.2007.12.007","article-title":"A moving boundary approach to American option pricing","volume":"32","author":"Muthuraman","year":"2008","journal-title":"J. Econom. Dynam. Control"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122117302493?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122117302493?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T01:27:06Z","timestamp":1627781226000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122117302493"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,8]]},"references-count":26,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2017,8]]}},"alternative-id":["S0898122117302493"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2017.04.018","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2017,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybrid Laplace transform and finite difference methods for pricing American options under complex models","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2017.04.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}