{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T15:49:35Z","timestamp":1723650575084},"reference-count":45,"publisher":"Elsevier BV","issue":"6","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T00:00:00Z","timestamp":1615766400000},"content-version":"vor","delay-in-days":1475,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004919","name":"King Abdulaziz City for Science and Technology","doi-asserted-by":"publisher","award":["11-OIL1661-04"],"id":[{"id":"10.13039\/501100004919","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.camwa.2016.11.022","type":"journal-article","created":{"date-parts":[[2016,12,6]],"date-time":"2016-12-06T15:01:53Z","timestamp":1481036513000},"page":"1385-1402","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"title":["A modified memory-based mathematical model describing fluid flow in porous media"],"prefix":"10.1016","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1865-1082","authenticated-orcid":false,"given":"Abiola D.","family":"Obembe","sequence":"first","affiliation":[]},{"given":"M. Enamul","family":"Hossain","sequence":"additional","affiliation":[]},{"given":"Kassem","family":"Mustapha","sequence":"additional","affiliation":[]},{"given":"Sidqi A.","family":"Abu-Khamsin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2016.11.022_br000005","series-title":"Diffusion and Reactions in Fractals and Disordered Systems","author":"Ben-Avraham","year":"2000"},{"key":"10.1016\/j.camwa.2016.11.022_br000010","series-title":"Les Fontaines Publiques de la Ville de Dijon: Exposition et Application... (Google eBook)","author":"Darcy","year":"1856"},{"key":"10.1016\/j.camwa.2016.11.022_br000015","doi-asserted-by":"crossref","first-page":"1823","DOI":"10.1007\/s00707-013-0840-3","article-title":"Nonlinear correction to Darcy\u2019s law for channels with wavy walls","volume":"224","author":"Adler","year":"2013","journal-title":"Acta Mech."},{"key":"10.1016\/j.camwa.2016.11.022_br000020","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/S0378-4371(00)00329-0","article-title":"Nonlinear correction to Darcy\u2019s law for a flow through periodic arrays of elliptic cylinders","volume":"293","author":"Kim","year":"2001","journal-title":"Physica A"},{"key":"10.1016\/j.camwa.2016.11.022_br000025","series-title":"Homogenization of Coupled Phenomena in Heterogenous Media","author":"Auriault","year":"2010"},{"key":"10.1016\/j.camwa.2016.11.022_br000030","article-title":"Diffusion with space memory modelled with distributed order space fractional differential equations","volume":"46","author":"Caputo","year":"2003","journal-title":"Ann. Geophys."},{"key":"10.1016\/j.camwa.2016.11.022_br000035","first-page":"1329","article-title":"Experimental and theoretical memory diffusion of water in sand","volume":"2","author":"Iaffaldano","year":"2005","journal-title":"Hydrol. Earth Syst. Sci. Discuss."},{"key":"10.1016\/j.camwa.2016.11.022_br000040","first-page":"2","article-title":"Diffusion of fluids in porous media with memory","volume":"28","author":"Caputo","year":"1998","journal-title":"Geothermics"},{"key":"10.1016\/j.camwa.2016.11.022_br000045","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1029\/1999WR900299","article-title":"Models of flux in porous media with memory","volume":"36","author":"Caputo","year":"2000","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.camwa.2016.11.022_br000050","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1007\/s11242-009-9456-4","article-title":"Flux in porous media with memory: models and experiments","volume":"83","author":"Di Giuseppe","year":"2010","journal-title":"Transp. Porous Media"},{"key":"10.1016\/j.camwa.2016.11.022_br000055","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1111\/j.1365-246X.2004.02290.x","article-title":"Diffusion in porous layers with memory","volume":"158","author":"Caputo","year":"2004","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.camwa.2016.11.022_br000060","doi-asserted-by":"crossref","first-page":"93","DOI":"10.5194\/hess-10-93-2006","article-title":"Experimental and theoretical memory diffusion of water in sand","volume":"10","author":"Martino","year":"2006","journal-title":"Hydrol. Earth Syst. Sci. Discuss."},{"key":"10.1016\/j.camwa.2016.11.022_br000065","series-title":"SPE Lat. Am. Caribb. Pet. Eng. Conf","article-title":"Interference tests analysis in fractured formations with a time-fractional equation: SPE-153615-MS","author":"de Swaan","year":"2012"},{"key":"10.1016\/j.camwa.2016.11.022_br000070","series-title":"Fractional Diffusion in Naturally Fractured Unconventional Reservoirs","author":"Ozcan","year":"2014"},{"key":"10.1016\/j.camwa.2016.11.022_br000075","unstructured":"S. Amitai, R. Blumenfeld, Failure of isotropic continuous-time random walks to model finite-size particle diffusion in porous media and an effective modification, arXiv Prepr. arXiv1501.03998. 2015."},{"key":"10.1016\/j.camwa.2016.11.022_br000080","doi-asserted-by":"crossref","DOI":"10.1088\/1751-8113\/46\/34\/345501","article-title":"Theory and simulation of time-fractional fluid diffusion in porous media","volume":"46","author":"Carcione","year":"2013","journal-title":"J. Phys. A: Math. Theor."},{"key":"10.1016\/j.camwa.2016.11.022_br000085","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1111\/gwat.12267","article-title":"Incorporating super-diffusion due to sub-grid heterogeneity to capture non-fickian transport","volume":"53","author":"Baeumer","year":"2015","journal-title":"Ground Water"},{"key":"10.1016\/j.camwa.2016.11.022_br000090","first-page":"141","article-title":"A comprehensive material balance equation with the inclusion of memory during rock-fluid deformation","volume":"1","author":"Hossain","year":"2009","journal-title":"Adv. Sustain. Pet. Eng. Sci."},{"key":"10.1016\/j.camwa.2016.11.022_br000095","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1615\/JPorMedia.v18.i7.70","article-title":"A mathematical model for thermal flooding with equal rock and fluid temperatures","volume":"18","author":"Hossain","year":"2015","journal-title":"J. Porous Media"},{"key":"10.1016\/j.camwa.2016.11.022_br000100","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1137\/030602666","article-title":"An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations","volume":"42","author":"Yuste","year":"2005","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2016.11.022_br000105","doi-asserted-by":"crossref","first-page":"406","DOI":"10.1016\/j.jcp.2003.07.008","article-title":"Numerical methods for the solution of partial differential equations of fractional order","volume":"192","author":"Lynch","year":"2003","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.camwa.2016.11.022_br000110","doi-asserted-by":"crossref","first-page":"1212","DOI":"10.1016\/j.apnum.2007.06.003","article-title":"Numerical treatment of fractional heat equations","volume":"58","author":"Scherer","year":"2008","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.camwa.2016.11.022_br000115","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1016\/j.jcp.2004.11.025","article-title":"The accuracy and stability of an implicit solution method for the fractional diffusion equation","volume":"205","author":"Langlands","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.camwa.2016.11.022_br000120","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.jcp.2005.08.008","article-title":"A second-order accurate numerical approximation for the fractional diffusion equation","volume":"213","author":"Tadjeran","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.camwa.2016.11.022_br000125","doi-asserted-by":"crossref","first-page":"1138","DOI":"10.1016\/j.camwa.2008.02.015","article-title":"Implicit finite difference approximation for time fractional diffusion equations","volume":"56","author":"Murio","year":"2008","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000130","doi-asserted-by":"crossref","first-page":"2924","DOI":"10.1016\/j.camwa.2011.02.051","article-title":"Notes on Implicit finite difference approximation for time fractional diffusion equations [Comput. Math. Appl. 56 (2008) 1138\u20131145]","volume":"61","author":"Ding","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000135","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/S0370-1573(02)00331-9","article-title":"Chaos, fractional kinetics, and anomalous transport","volume":"371","author":"Zaslavsky","year":"2002","journal-title":"Phys. Rep."},{"key":"10.1016\/j.camwa.2016.11.022_br000140","series-title":"SPE Low Perm Symp","article-title":"Rate decline, power laws, and subdiffusion in fractured rocks","author":"Raghavan","year":"2016"},{"key":"10.1016\/j.camwa.2016.11.022_br000145","doi-asserted-by":"crossref","DOI":"10.1016\/j.camwa.2015.12.030","article-title":"Parameter estimation for the fractional fractal diffusion model based on its numerical solution","author":"Fan","year":"2016","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000150","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.1016\/j.camwa.2013.08.028","article-title":"Numerical and analytical solutions of new generalized fractional diffusion equation","volume":"66","author":"Xu","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000155","doi-asserted-by":"crossref","first-page":"702","DOI":"10.1016\/j.camwa.2013.01.028","article-title":"Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching","volume":"66","author":"Danca","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000160","doi-asserted-by":"crossref","first-page":"908","DOI":"10.1016\/j.camwa.2012.11.017","article-title":"Fractional model for malaria transmission under control strategies","volume":"66","author":"Pinto","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2016.11.022_br000165","doi-asserted-by":"crossref","first-page":"531","DOI":"10.2118\/10528-PA","article-title":"Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability","volume":"23","author":"Peaceman","year":"1983","journal-title":"Soc. Pet. Eng. J."},{"key":"10.1016\/j.camwa.2016.11.022_br000170","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.petrol.2013.08.027","article-title":"Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity","volume":"109","author":"Raghavan","year":"2013","journal-title":"J. Pet. Sci. Eng."},{"key":"10.1016\/j.camwa.2016.11.022_br000175","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.cam.2009.02.013","article-title":"Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term","volume":"231","author":"Liu","year":"2009","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2016.11.022_br000180","series-title":"Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Vol. 198","author":"Podlubny","year":"1998"},{"key":"10.1016\/j.camwa.2016.11.022_br000185","series-title":"Fractional Integrals and Derivatives: Theory and Applications","author":"Samko","year":"1993"},{"key":"10.1016\/j.camwa.2016.11.022_br000190","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2015.04.048","article-title":"Efficient computation of the Gr\u00fcnwald-Letnikov fractional diffusion derivative using adaptive time step memory","author":"MacDonald","year":"2015","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.camwa.2016.11.022_br000195","series-title":"Basic Aapplied Reservoir Simulation","author":"Ertekin","year":"2001"},{"key":"10.1016\/j.camwa.2016.11.022_br000200","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.jcp.2005.12.006","article-title":"Weighted average finite difference methods for fractional diffusion equations","volume":"216","author":"Yuste","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.camwa.2016.11.022_br000205","series-title":"An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of their Solution and Some of their Applications","author":"Podlubny","year":"1999"},{"key":"10.1016\/j.camwa.2016.11.022_br000210","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1137\/0517050","article-title":"Discretized fractional calculus","volume":"17","author":"Lubich","year":"1986","journal-title":"SIAM J. Math. Anal."},{"key":"10.1016\/j.camwa.2016.11.022_br000215","series-title":"Petroleum Reservoir Simulation: A Basic Approach","author":"Jamal","year":"2006"},{"key":"10.1016\/j.camwa.2016.11.022_br000220","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1145\/361953.361969","article-title":"Algorithm 368: Numerical inversion of Laplace transforms [D5]","volume":"13","author":"Stehfest","year":"1970","journal-title":"Commun. ACM"},{"key":"10.1016\/j.camwa.2016.11.022_br000225","doi-asserted-by":"crossref","first-page":"1811","DOI":"10.1081\/LFT-120024563","article-title":"Improved correlations for fluid properties of UAE crude oils","volume":"21","author":"Almehaideb","year":"2003","journal-title":"Pet. Sci. Technol."}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122116306393?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122116306393?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,19]],"date-time":"2021-03-19T04:10:36Z","timestamp":1616127036000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122116306393"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":45,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2017,3]]}},"alternative-id":["S0898122116306393"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2016.11.022","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A modified memory-based mathematical model describing fluid flow in porous media","name":"articletitle","label":"Article Title"},{"value":"Computers & Mathematics with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.camwa.2016.11.022","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd.","name":"copyright","label":"Copyright"}]}}