{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T05:22:38Z","timestamp":1726464158566},"reference-count":71,"publisher":"Elsevier BV","issue":"4","license":[{"start":{"date-parts":[[2012,8,1]],"date-time":"2012-08-01T00:00:00Z","timestamp":1343779200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2016,7,1]],"date-time":"2016-07-01T00:00:00Z","timestamp":1467331200000},"content-version":"vor","delay-in-days":1430,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2012,8]]},"DOI":"10.1016\/j.camwa.2011.10.052","type":"journal-article","created":{"date-parts":[[2012,4,19]],"date-time":"2012-04-19T07:22:44Z","timestamp":1334820164000},"page":"399-412","source":"Crossref","is-referenced-by-count":28,"title":["A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions: A comparative study"],"prefix":"10.1016","volume":"64","author":[{"given":"S.","family":"Kazem","sequence":"first","affiliation":[]},{"given":"J.A.","family":"Rad","sequence":"additional","affiliation":[]},{"given":"K.","family":"Parand","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2011.10.052_br000005","first-page":"75","article-title":"A numerical approximation of Nonfickian flows with mixing length growth in porous media","volume":"70","author":"Ewing","year":"2001","journal-title":"Acta Math. Univ. Comenian."},{"key":"10.1016\/j.camwa.2011.10.052_br000010","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00613273","article-title":"Nonlocal dispersion in media with continuously evolving scales of heterogeneity","volume":"13","author":"Cushman","year":"1993","journal-title":"Transp. Porous Media"},{"key":"10.1016\/j.camwa.2011.10.052_br000015","doi-asserted-by":"crossref","first-page":"2219","DOI":"10.1029\/95WR01396","article-title":"Nonlocal reactive transport with physical and chemical heterogeneity: localization error","volume":"31","author":"Cushman","year":"1995","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.camwa.2011.10.052_br000020","series-title":"Current and Future Directions in Applied Mathematics","first-page":"161","article-title":"Mathematical modeling and simulation for applications of fluid flow in porous media","author":"Ewing","year":"1997"},{"key":"10.1016\/j.camwa.2011.10.052_br000025","doi-asserted-by":"crossref","first-page":"2239","DOI":"10.1029\/95WR01395","article-title":"Nonlocal reactive transport with physical and chemical heterogeneity: Linear nonequilibrium sorption with random Kd","volume":"31","author":"Hu","year":"1995","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.camwa.2011.10.052_br000030","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/BF00613272","article-title":"A theory of macrodispersion for the scale-up problem","volume":"13","author":"Glimm","year":"1993","journal-title":"Transp. Porous Media"},{"key":"10.1016\/j.camwa.2011.10.052_br000035","first-page":"887","article-title":"A quasi-linear theory of non-Fickian and Fickian subsurface dispersion I. Theoretical analysis with application to isotropic media","volume":"26","author":"Neuman","year":"1990","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.camwa.2011.10.052_br000040","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/S0309-1708(96)00052-8","article-title":"Aspects of upscaling in formulation of flow in porous media","volume":"20","author":"Ewing","year":"1997","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.camwa.2011.10.052_br000045","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1002\/cnm.1166","article-title":"Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He\u2019s variational iteration technique","volume":"26","author":"Dehghan","year":"2010","journal-title":"Int. J. Numer. Methods Biomed. Eng."},{"key":"10.1016\/j.camwa.2011.10.052_br000050","first-page":"301","article-title":"L\u221e-error estimates and superconvergence in maximum norm of mixed finite element methods for nonfickian flows in porous media","volume":"2","author":"Ewing","year":"2005","journal-title":"Int. J. Numer. Anal. Model."},{"key":"10.1016\/j.camwa.2011.10.052_br000055","series-title":"Proceedings of Next Generation Environmental Models and Computational Methods","first-page":"227","article-title":"The need for multidisciplinary involvement in groundwater contaminant simulations","author":"Ewing","year":"1997"},{"key":"10.1016\/j.camwa.2011.10.052_br000060","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/BF02575943","article-title":"Non-classical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations","volume":"25","author":"Cannon","year":"1988","journal-title":"Calcolo"},{"key":"10.1016\/j.camwa.2011.10.052_br000065","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1137\/0727036","article-title":"A priori L2 error estimates for finite element methods for nonlinear diffusion equations with memory","volume":"27","author":"Cannon","year":"1990","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2011.10.052_br000070","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1002\/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO;2-3","article-title":"Finite volume element approximations of nonlocal reactive flows in porous media","volume":"16","author":"Ewing","year":"2000","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.camwa.2011.10.052_br000075","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s006070050007","article-title":"Finite volume element approximations of nonlocal in time one-dimensional flows in porous media","volume":"64","author":"Ewing","year":"2000","journal-title":"Computing"},{"key":"10.1016\/j.camwa.2011.10.052_br000080","doi-asserted-by":"crossref","first-page":"1538","DOI":"10.1137\/S0036142900378406","article-title":"Sharp L2 error estimates and super convergence of mixed finite element methods for nonfickian flows in porous media","volume":"40","author":"Ewing","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2011.10.052_br000085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1023\/A:1022264125558","article-title":"An immediate analysis for global superconvergence for integro-differential equations","volume":"42","author":"Lin","year":"1997","journal-title":"Appl. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000090","first-page":"159","article-title":"On maximum norm estimates for Ritz\u2013Volterra projections with applications to some time-dependent problems","volume":"15","author":"Lin","year":"1997","journal-title":"J. Comput. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000095","doi-asserted-by":"crossref","first-page":"1047","DOI":"10.1137\/0728056","article-title":"Ritz\u2013Volterra projections onto finite-element spaces and applications to integro-differential and related equations","volume":"28","author":"Lin","year":"1991","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2011.10.052_br000100","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1137\/0723073","article-title":"Time discretization of an integro-differential equation of parabolic type","volume":"23","author":"Sloan","year":"1986","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2011.10.052_br000105","first-page":"181","article-title":"Scattered data interpolation: test of some methods","volume":"38","author":"Franke","year":"1982","journal-title":"Math. Comp."},{"key":"10.1016\/j.camwa.2011.10.052_br000110","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0898-1221(90)90270-T","article-title":"Multiquadrics\u2014a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2011.10.052_br000115","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/0898-1221(90)90271-K","article-title":"Multiquadrics\u2014a scattered data approximation scheme with applications to computational fluid dynamics II. Solutions to parabolic, hyperbolic and elliptic partial differential equations","volume":"19","author":"Kansa","year":"1990","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2011.10.052_br000120","first-page":"275","article-title":"Application of the multiquadric method for numerical solution of elliptic partial differential equations","volume":"84","author":"Sharan","year":"1997","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.camwa.2011.10.052_br000125","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1002\/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I","article-title":"A numerical method for heat transfer problems using collocation and radial basis functions","volume":"42","author":"Zerroukat","year":"1998","journal-title":"Int. J. Numer. Meth. Eng."},{"key":"10.1016\/j.camwa.2011.10.052_br000130","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0893-6080(00)00095-2","article-title":"Numerical solution of differential equations using multiquadric radial basis function networks","volume":"14","author":"Mai-Duy","year":"2001","journal-title":"Neural Networks"},{"key":"10.1016\/j.camwa.2011.10.052_br000135","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.enganabound.2008.05.001","article-title":"An integrated-RBF technique based on Galerkin formulation for elliptic differential equations","volume":"33","author":"Mai-Duy","year":"2009","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000140","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.enganabound.2009.09.003","article-title":"A method for solving partial differential equations via radial basis functions: application to the heat equation","volume":"34","author":"Tatari","year":"2010","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000145","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.cam.2008.12.011","article-title":"Numerical solution of the nonlinear Klein\u2013Gordon equation using radial basis functions","volume":"230","author":"Dehghan","year":"2009","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000150","first-page":"1754","article-title":"Numerical solution of the nonlinear Fredholm integral equations by positive definite functions","volume":"190","author":"Alipanah","year":"2007","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.camwa.2011.10.052_br000155","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.apnum.2004.07.004","article-title":"Adaptive radial basis function method for time dependent partial differential equations","volume":"54","author":"Sarra","year":"2005","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000160","doi-asserted-by":"crossref","first-page":"1396","DOI":"10.1016\/j.cnsns.2010.07.011","article-title":"Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium","volume":"16","author":"Parand","year":"2011","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.camwa.2011.10.052_br000165","doi-asserted-by":"crossref","first-page":"4250","DOI":"10.1016\/j.cnsns.2011.02.020","article-title":"A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation","volume":"16","author":"Parand","year":"2011","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.camwa.2011.10.052_br000170","doi-asserted-by":"crossref","first-page":"015011","DOI":"10.1088\/0031-8949\/83\/01\/015011","article-title":"An improved numerical method for a class of astrophysics problems based on radial basis functions","volume":"83","author":"Parand","year":"2011","journal-title":"Phys. Scr."},{"key":"10.1016\/j.camwa.2011.10.052_br000175","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1016\/j.cam.2008.03.039","article-title":"A meshfree method for the numerical solution of the RLW equation","volume":"223","author":"Islam","year":"2009","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000180","first-page":"127","article-title":"A comparative study of global and local meshless methods for diffusion\u2013reaction equation","volume":"59","author":"Yao","year":"2010","journal-title":"CMES Comput. Model. Eng."},{"key":"10.1016\/j.camwa.2011.10.052_br000185","doi-asserted-by":"crossref","first-page":"3896","DOI":"10.1016\/j.apm.2010.03.028","article-title":"A computational modeling of the behavior of the two-dimensional reaction\u2013diffusion Brusselator system","volume":"34","author":"Islam","year":"2010","journal-title":"Appl. Math. Modelling"},{"key":"10.1016\/j.camwa.2011.10.052_br000190","doi-asserted-by":"crossref","first-page":"1651","DOI":"10.1016\/j.camwa.2009.03.038","article-title":"Solving a system of nonlinear integral equations by an RBF network","volume":"57","author":"Golbabai","year":"2009","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2011.10.052_br000195","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.compfluid.2010.08.005","article-title":"Radial basis functions: developments and applications to planetary scale flows","volume":"46","author":"Flyer","year":"2011","journal-title":"Comput. Fluids"},{"key":"10.1016\/j.camwa.2011.10.052_br000200","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.camwa.2009.06.023","article-title":"A kind of improved univariate multiquadric quasi-interpolation operators","volume":"59","author":"Wang","year":"2010","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2011.10.052_br000205","doi-asserted-by":"crossref","first-page":"2185","DOI":"10.1016\/j.apm.2010.11.022","article-title":"High accuracy multiquadric quasi-interpolation","volume":"35","author":"Jiang","year":"2011","journal-title":"Appl. Math. Modelling"},{"key":"10.1016\/j.camwa.2011.10.052_br000210","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1080\/00207160802322316","article-title":"A collocation and Cartesian grid methods using new radial basis function to solve class of partial differential equations","volume":"87","author":"Ahmed","year":"2010","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000215","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1016\/j.enganabound.2006.03.001","article-title":"A collocation method using new combined radial basis functions of thin plate and multiquadraic types","volume":"30","author":"Ahmed","year":"2006","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000220","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1002\/num.20616","article-title":"Solitary wave solutions of the MRLW equation using radial basis functions","volume":"28","author":"Dereli","year":"2012","journal-title":"Numer. Meth. Part. D. E."},{"key":"10.1016\/j.camwa.2011.10.052_br000225","doi-asserted-by":"crossref","first-page":"1569","DOI":"10.1080\/00207160802395908","article-title":"Radial basis functions method for numerical solution of the modified equal width equation","volume":"87","author":"Dereli","year":"2010","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000230","doi-asserted-by":"crossref","first-page":"591","DOI":"10.5560\/zna.2011-0014","article-title":"A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions","volume":"66a","author":"Kazem","year":"2011","journal-title":"Z. Naturforsch"},{"key":"10.1016\/j.camwa.2011.10.052_br000235","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.enganabound.2011.06.012","article-title":"Radial basis functions methods for solving Fokker\u2013Planck equation","volume":"36","author":"Kazem","year":"2012","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000240","first-page":"430","article-title":"An approximation algorithm for the solution of the singularly perturbed Volterra integro-differential and Volterra integral equations","volume":"12","author":"Parand","year":"2011","journal-title":"Int. J. Nonlinear Sci."},{"key":"10.1016\/j.camwa.2011.10.052_br000245","doi-asserted-by":"crossref","first-page":"2360","DOI":"10.1016\/j.apm.2011.08.032","article-title":"Radial basis functions method for solving of a non-local boundary value problem with Neumann\u2019s boundary conditions","volume":"36","author":"Kazem","year":"2012","journal-title":"Appl. Math. Modell."},{"key":"10.1016\/j.camwa.2011.10.052_br000250","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1023\/A:1018975909870","article-title":"An algorithm for selecting a good parameter c in radial basis function interpolation","volume":"11","author":"Rippa","year":"1999","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000255","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1002\/num.10062","article-title":"Exponential convergence and H-c multiquadric collocation method for partial differential equations","volume":"19","author":"Cheng","year":"2003","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.camwa.2011.10.052_br000260","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/0898-1221(91)90123-L","article-title":"The parameter R2 in multiquadric interpolation","volume":"21","author":"Carlson","year":"1991","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.camwa.2011.10.052_br000265","unstructured":"A.E. Tarwater, A parameter study of Hardy\u2019s multiquadric method for scattered data interpolation, Report UCRL-53670, Lawrence Livermore National Laboratory, 1985."},{"key":"10.1016\/j.camwa.2011.10.052_br000270","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1007\/s11075-007-9072-8","article-title":"On choosing optimal shape parameters for RBF approximation","volume":"45","author":"Fasshauer","year":"2007","journal-title":"Numer. Algorithms"},{"year":"1992","series-title":"The Theory of Radial Basis Function Approximation in 1990","author":"Powell","key":"10.1016\/j.camwa.2011.10.052_br000275"},{"key":"10.1016\/j.camwa.2011.10.052_br000280","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0962492900000015","article-title":"Radial basis functions","author":"Buhmann","year":"2000","journal-title":"Acta Numer."},{"year":"2004","series-title":"Radial Basis Functions: Theory and Implementations","author":"Buhmann","key":"10.1016\/j.camwa.2011.10.052_br000285"},{"year":"2005","series-title":"Scattered Data Approximation","author":"Wendland","key":"10.1016\/j.camwa.2011.10.052_br000290"},{"year":"2007","series-title":"Meshfree Approximation Methods with Matlab","author":"Fasshauer","key":"10.1016\/j.camwa.2011.10.052_br000295"},{"key":"10.1016\/j.camwa.2011.10.052_br000300","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/S0955-7997(98)00087-3","article-title":"Some recent results and proposals for the use of radial basis functions in the bem","volume":"23","author":"Golberg","year":"1999","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000305","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1016\/j.enganabound.2008.10.001","article-title":"Application of meshfree collocation method to a class of nonlinear partial differential equations","volume":"33","author":"Khattak","year":"2009","journal-title":"Eng. Anal. Bound. Elem."},{"key":"10.1016\/j.camwa.2011.10.052_br000310","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1007\/s11075-009-9293-0","article-title":"A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions","volume":"52","author":"Dehghan","year":"2009","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.camwa.2011.10.052_br000315","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1093\/imanum\/drn064","article-title":"Comparisons between pseudospectral and radial basis function derivative approximations","volume":"30","author":"Fornberg","year":"2010","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.camwa.2011.10.052_br000320","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/S0898-1221(01)00299-1","article-title":"Observations on the behavior of radial basis function approximations near boundaries","volume":"43","author":"Fornberg","year":"2002","journal-title":"Comput. Math. Appl."},{"year":"1997","series-title":"Solving Partial Differential Equations by Collocation With Radial Basis Functions","author":"Fasshauer","key":"10.1016\/j.camwa.2011.10.052_br000325"},{"key":"10.1016\/j.camwa.2011.10.052_br000330","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1002\/nme.1220","article-title":"Solving high order ordinary differential equations with radial basis function networks","volume":"62","author":"Mai-Duy","year":"2005","journal-title":"Int. J. Numer. Meth. Eng."},{"key":"10.1016\/j.camwa.2011.10.052_br000335","doi-asserted-by":"crossref","first-page":"924","DOI":"10.1002\/num.20297","article-title":"Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions","volume":"24","author":"Dehghan","year":"2008","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.camwa.2011.10.052_br000340","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/BF02836101","article-title":"Hermite\u2013Birkhoff interpolation of scattered data by radial basis functions","volume":"8","author":"Wu","year":"1992","journal-title":"Approx. Theory"},{"key":"10.1016\/j.camwa.2011.10.052_br000345","first-page":"1","article-title":"Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs","volume":"19","author":"Wu","year":"2002","journal-title":"J. Engrg. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000350","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1023\/A:1018916902176","article-title":"Convergence order estimates of meshless collocation methods using radial basis functions","volume":"8","author":"Schaback","year":"1998","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.camwa.2011.10.052_br000355","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1016\/S0898-1221(01)00305-4","article-title":"A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations","volume":"43","author":"Power","year":"2002","journal-title":"Comput. Math. Appl."}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089812211100928X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089812211100928X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,23]],"date-time":"2024-04-23T12:42:18Z","timestamp":1713876138000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S089812211100928X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,8]]},"references-count":71,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2012,8]]}},"alternative-id":["S089812211100928X"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2011.10.052","relation":{},"ISSN":["0898-1221"],"issn-type":[{"type":"print","value":"0898-1221"}],"subject":[],"published":{"date-parts":[[2012,8]]}}}