{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,5]],"date-time":"2022-04-05T08:37:45Z","timestamp":1649147865577},"reference-count":20,"publisher":"Elsevier BV","issue":"6-7","license":[{"start":{"date-parts":[[2006,3,1]],"date-time":"2006-03-01T00:00:00Z","timestamp":1141171200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2013,7,17]],"date-time":"2013-07-17T00:00:00Z","timestamp":1374019200000},"content-version":"vor","delay-in-days":2695,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2006,3]]},"DOI":"10.1016\/j.camwa.2005.11.027","type":"journal-article","created":{"date-parts":[[2008,4,23]],"date-time":"2008-04-23T04:46:41Z","timestamp":1208926001000},"page":"915-926","source":"Crossref","is-referenced-by-count":1,"title":["A posteriori error estimates for one-dimensional convection-diffussion problems"],"prefix":"10.1016","volume":"51","author":[{"given":"R.","family":"Vulanovi\u0107","sequence":"first","affiliation":[]},{"given":"G.","family":"Hovhannisyan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.camwa.2005.11.027_bib1","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1137\/S0036142900368642","article-title":"Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem","volume":"39","author":"Kopteva","year":"2001","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2005.11.027_bib2","first-page":"151","article-title":"Stability and monotonicity properties of stiff quasilinear boundary problems","volume":"12","author":"Lorenz","year":"1982","journal-title":"Univ. Novom Sadu Zb. Rad. Prir.-Mat. Fak. Ser. Mat."},{"key":"10.1016\/j.camwa.2005.11.027_bib3","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/BF02238732","article-title":"A uniform numerical method for quasilinear singular perturbation problems without turning points","volume":"41","author":"Vulanovi\u0107","year":"1989","journal-title":"Computing"},{"key":"10.1016\/j.camwa.2005.11.027_bib4","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1093\/imanum\/21.1.349","article-title":"A priori meshes for singularly perturbed quasilinear two-point boundary value problems","volume":"21","author":"Vulanovi\u0107","year":"2001","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.camwa.2005.11.027_bib5","series-title":"Nonlinear Singular Perturbation Phenomena: Theory and Application","author":"Chang","year":"1984"},{"key":"10.1016\/j.camwa.2005.11.027_bib6","series-title":"Applications of Advanced Computational Methods for Boundary and Interior Layers","year":"1993"},{"key":"10.1016\/j.camwa.2005.11.027_bib7","series-title":"Robust Computational Techniques for Boundary Layers","author":"Farrell","year":"2000"},{"key":"10.1016\/j.camwa.2005.11.027_bib8","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1137\/S0036142999355957","article-title":"Uniform pointwise convergence on Shishkin-type meshes for quasilinear convection-diffusion problems","volume":"38","author":"Lin\u00df","year":"2000","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2005.11.027_bib9","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0168-9274(00)00043-X","article-title":"Sufficient conditions for uniform convergence on layer-adapted grids","volume":"37","author":"Lin\u00df","year":"2001","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.camwa.2005.11.027_bib10","first-page":"187","article-title":"On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh","volume":"13","author":"Vulanovi\u0107","year":"1983","journal-title":"Univ. Novom Sadu Zb. Rad. Prir.-Mat. Fak. Ser. Mat."},{"key":"10.1016\/j.camwa.2005.11.027_bib11","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1137\/0719071","article-title":"Monotone difference schemes for singular perturbation problems","volume":"19","author":"Abrahamsson","year":"1982","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2005.11.027_bib12","series-title":"Proceedings of the Conference on the Numerical Analysis of Singular Perturbation Problems","first-page":"295","article-title":"Combinations of initial and boundary value methods for a class of singular perturbation problems","author":"Lorenz","year":"1979"},{"key":"10.1016\/j.camwa.2005.11.027_bib13","first-page":"522","article-title":"A second order numerical method for nonlinear singular perturbation problems without turning points","volume":"31","author":"Vulanovi\u0107","year":"1991","journal-title":"Zh. Vychisl. Mat. Mat. Fiz."},{"key":"10.1016\/j.camwa.2005.11.027_bib14","series-title":"Introduction to Singular Perturbations","author":"O'Malley","year":"1974"},{"key":"10.1016\/j.camwa.2005.11.027_bib15","series-title":"Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions","author":"Miller","year":"1996"},{"key":"10.1016\/j.camwa.2005.11.027_bib16","doi-asserted-by":"crossref","first-page":"1851","DOI":"10.1137\/S003614290241074X","article-title":"Error expansion for an upwind scheme applied to a two-dimensional convection-diffusion problem","volume":"41","author":"Kopteva","year":"2003","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.camwa.2005.11.027_bib17","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/S0045-7825(97)00329-0","article-title":"Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: Convection-diffusion type","volume":"162","author":"Li","year":"1998","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.camwa.2005.11.027_bib18","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1007\/PL00005431","article-title":"A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations","volume":"87","author":"Ohlberger","year":"2001","journal-title":"Numer. Math."},{"key":"10.1016\/j.camwa.2005.11.027_bib19","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.cam.2004.10.009","article-title":"On a set of singularly perturbed convection-diffusion equations","volume":"180","author":"Lin\u00df","year":"2005","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.camwa.2005.11.027_bib20","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/S0168-9274(01)00073-3","article-title":"An experimental technique for computing parameter-uniform error estimates for numerical solutions of singular perturbation problems, with an application to Prandtl's problem at high Reynolds number","volume":"40","author":"Farrell","year":"2002","journal-title":"Appl. Numer. Math."}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122106000265?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122106000265?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,12,29]],"date-time":"2018-12-29T11:24:30Z","timestamp":1546082670000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122106000265"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,3]]},"references-count":20,"journal-issue":{"issue":"6-7","published-print":{"date-parts":[[2006,3]]}},"alternative-id":["S0898122106000265"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2005.11.027","relation":{},"ISSN":["0898-1221"],"issn-type":[{"value":"0898-1221","type":"print"}],"subject":[],"published":{"date-parts":[[2006,3]]}}}