{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,29]],"date-time":"2025-01-29T22:10:22Z","timestamp":1738188622125,"version":"3.34.0"},"reference-count":34,"publisher":"Elsevier BV","issue":"6-7","license":[{"start":{"date-parts":[[2006,3,1]],"date-time":"2006-03-01T00:00:00Z","timestamp":1141171200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2013,7,17]],"date-time":"2013-07-17T00:00:00Z","timestamp":1374019200000},"content-version":"vor","delay-in-days":2695,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Computers & Mathematics with Applications"],"published-print":{"date-parts":[[2006,3]]},"DOI":"10.1016\/j.camwa.2005.08.034","type":"journal-article","created":{"date-parts":[[2008,4,23]],"date-time":"2008-04-23T08:46:41Z","timestamp":1208940401000},"page":"1075-1092","source":"Crossref","is-referenced-by-count":31,"title":["Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data"],"prefix":"10.1016","volume":"51","author":[{"given":"Chad-Ton","family":"Su","sequence":"first","affiliation":[]},{"given":"Chien-Hsin","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Kuang-Hung","family":"Hsu","sequence":"additional","affiliation":[]},{"given":"Wen-Ko","family":"Chiu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"author":"Canadian Diabetes Association","key":"10.1016\/j.camwa.2005.08.034_bib1"},{"key":"10.1016\/j.camwa.2005.08.034_bib2","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0168-8227(01)00228-5","article-title":"Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population","volume":"52","author":"Kim","year":"2001","journal-title":"Diabetes Research and Clinical Practice"},{"issue":"7","key":"10.1016\/j.camwa.2005.08.034_bib3","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1016\/S0895-7061(00)00255-7","article-title":"Different association of hypertension and insulin-related metabolic syndrome between man and women in 8437 nondiabetic Chinese","volume":"13","author":"Chen","year":"2000","journal-title":"American Journal of Hypertension"},{"key":"10.1016\/j.camwa.2005.08.034_bib4","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/0933-3657(94)90005-1","article-title":"On using feedforward neural networks for clinical diagnostic tasks","volume":"6","author":"Dorffner","year":"1994","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib5","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/S0933-3657(98)00040-2","article-title":"Evolving artificial neural networks for screening features from mammograms","volume":"14","author":"Fogel","year":"1998","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib6","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.artmed.2004.01.004","article-title":"Comparison of neural network predictors in the classification of tracheal-bronchial breath sounds by respiratory auscultation","volume":"31","author":"Folland","year":"2004","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib7","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/S0933-3657(03)00003-4","article-title":"Self-organizing map for cluster analysis of a breast cancer database","volume":"27","author":"Markey","year":"2003","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0933-3657(99)00047-0","article-title":"Evolutionary computation in medicine: An overview","volume":"19","author":"Carlos","year":"2000","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib9","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/S0933-3657(98)00063-3","article-title":"Analysing and improving the diagnosis of ischaemic heart disease with machine learning","volume":"16","author":"Kukar","year":"1999","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib10","series-title":"Intelligent Data Analysis in Medicine and Pharmacology","first-page":"227","article-title":"Using inductive logic programming to learn classification rules that identify glaucomatous eyes","author":"Mizoguchi","year":"1997"},{"key":"10.1016\/j.camwa.2005.08.034_bib11","series-title":"Intelligent Data Analysis in Medicine and Pharmacology","first-page":"149","article-title":"Dementia screening with machine learning methods","author":"Shankle","year":"1997"},{"key":"10.1016\/j.camwa.2005.08.034_bib12","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/S0933-3657(99)00017-2","article-title":"The determination of three subcutaneous adipose tissue compartments in non-insulin-dependent diabetes mellitus women with artificial neural networks and factor analysis","volume":"17","author":"Erwin","year":"1999","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.camwa.2005.08.034_bib13","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1006\/cbmr.2000.1550","article-title":"Artificial neural networks compared to factor analysis for low-dimensional classification of high-dimensional body fat topography data of healthy and diabetic subjects","volume":"33","author":"Erwin","year":"2000","journal-title":"Computers and Biomedical Research"},{"issue":"12","key":"10.1016\/j.camwa.2005.08.034_bib14","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0004-3702(98)00081-2","article-title":"Analysis of notions of diagnosis","volume":"105","author":"Lucas","year":"1998","journal-title":"Artificial Intelligence"},{"issue":"2","key":"10.1016\/j.camwa.2005.08.034_bib15","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/S0304-3835(01)00508-0","article-title":"Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network","volume":"171","author":"Abdolmaleki","year":"2001","journal-title":"Cancer Letters"},{"year":"1994","series-title":"Fundamentals of Neural Networks","author":"Fausett","key":"10.1016\/j.camwa.2005.08.034_bib16"},{"key":"10.1016\/j.camwa.2005.08.034_bib17","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1109\/72.839008","article-title":"Extraction rules from trained neural networks","volume":"11","author":"Tsukimoto","year":"2000","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.camwa.2005.08.034_bib18","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/0950-7051(96)81920-4","article-title":"Survey and critique of techniques for extracting rules from trained artificial neural networks","volume":"8","author":"Andrews","year":"1995","journal-title":"Knowledge-Based System"},{"key":"10.1016\/j.camwa.2005.08.034_bib19","series-title":"Proceedings of Rule Extraction Trained Artificial Neural Networks Workshop","article-title":"Rules and networks","author":"Andrews","year":"1996"},{"issue":"4","key":"10.1016\/j.camwa.2005.08.034_bib20","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1080\/08874417.2002.11647054","article-title":"Knowledge mining from trained neural networks","volume":"42","author":"Su","year":"2002","journal-title":"Journal of Computer Information Systems"},{"year":"2001","series-title":"Data Mining: Concepts and Techniques","author":"Han","key":"10.1016\/j.camwa.2005.08.034_bib21"},{"year":"1993","series-title":"C4.5: Programs for Machine Learning","author":"Quinlan","key":"10.1016\/j.camwa.2005.08.034_bib22"},{"year":"1984","series-title":"Classification and Regression Trees","author":"Breiman","key":"10.1016\/j.camwa.2005.08.034_bib23"},{"issue":"1","key":"10.1016\/j.camwa.2005.08.034_bib24","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/BF00116251","article-title":"Induction of decision trees","volume":"1","author":"Quinlan","year":"1986","journal-title":"Machine Learning"},{"year":"2002","series-title":"Logistic regression: A self-learning text","author":"Kleinbaum","key":"10.1016\/j.camwa.2005.08.034_bib25"},{"key":"10.1016\/j.camwa.2005.08.034_bib26","first-page":"738","article-title":"Why rough sets","volume":"2","author":"Pawlak","year":"1996"},{"year":"2001","series-title":"NeuralWorks Professional II\/Plus getting started: A tutorial for Microsoft Windows computers, Version 5.50","author":"NeuralWare","key":"10.1016\/j.camwa.2005.08.034_bib27"},{"key":"10.1016\/j.camwa.2005.08.034_bib28","unstructured":"Rosetta GUI Version 1.4.41 http:\/\/idi.ntnu.no\/\u2248aleks\/rosetta\/, NTNU, Norway, (2001)."},{"key":"10.1016\/j.camwa.2005.08.034_bib29","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1093\/ajcn\/74.1.101","article-title":"Standard definitions of overweight and central adiposity for determining diabetes risk in Japanese Americans","volume":"74","author":"NcNeely","year":"2001","journal-title":"American Journal of Clinical Nutrition"},{"key":"10.1016\/j.camwa.2005.08.034_bib30","doi-asserted-by":"crossref","first-page":"2127","DOI":"10.2337\/diacare.24.12.2127","article-title":"Visceral fat is major contribution for multiple risk clustering in Japanese men with impaired glucose to tolerance","volume":"24","author":"Nagaretani","year":"2001","journal-title":"Diabetes Care"},{"key":"10.1016\/j.camwa.2005.08.034_bib31","first-page":"S10","article-title":"Population difference in body composition in relation to the body mass index","volume":"48","author":"Norgan","year":"1994","journal-title":"European Journal of Clinical Nutrition"},{"key":"10.1016\/j.camwa.2005.08.034_bib32","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1093\/ajcn\/60.1.23","article-title":"Asians have lower BMI but higher percentage body fat than do white: Comparison of anthropometric measurements","volume":"60","author":"Wang","year":"1994","journal-title":"American Journal Clinical Nutrition"},{"key":"10.1016\/j.camwa.2005.08.034_bib33","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1093\/oxfordjournals.aje.a008733","article-title":"How useful is BMI for comparison of body fatness across age, sex and ethic groups","volume":"143","author":"Gallagher","year":"1996","journal-title":"American Journal of Epidemiology"},{"key":"10.1016\/j.camwa.2005.08.034_bib34","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/S0025-7125(16)30695-2","article-title":"Health risks of obesity","volume":"73","author":"Kissebah","year":"1989","journal-title":"Medicine Clinics of North America"}],"container-title":["Computers & Mathematics with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122106000381?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0898122106000381?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,1,29]],"date-time":"2025-01-29T21:32:12Z","timestamp":1738186332000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0898122106000381"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,3]]},"references-count":34,"journal-issue":{"issue":"6-7","published-print":{"date-parts":[[2006,3]]}},"alternative-id":["S0898122106000381"],"URL":"https:\/\/doi.org\/10.1016\/j.camwa.2005.08.034","relation":{},"ISSN":["0898-1221"],"issn-type":[{"type":"print","value":"0898-1221"}],"subject":[],"published":{"date-parts":[[2006,3]]}}}