{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,17]],"date-time":"2024-07-17T21:19:31Z","timestamp":1721251171018},"reference-count":22,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T00:00:00Z","timestamp":1718928000000},"content-version":"am","delay-in-days":172,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cam.2023.115398","type":"journal-article","created":{"date-parts":[[2023,6,15]],"date-time":"2023-06-15T14:09:06Z","timestamp":1686838146000},"page":"115398","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Some elliptic second order problems and neural network solutions: Existence and error estimates"],"prefix":"10.1016","volume":"436","author":[{"given":"Jerome","family":"Pousin","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2023.115398_b1","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.cam.2023.115398_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.neunet.2017.12.007","article-title":"On the approximation by single hidden layer feedforward neural networks with fixed weights","volume":"98","author":"Guliyev","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.cam.2023.115398_b3","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.cam.2023.115398_b4","series-title":"Relu deep neural networks and linear finite elements","author":"He","year":"2018"},{"key":"10.1016\/j.cam.2023.115398_b5","series-title":"The deep ritz method: A deep learning-based numerical algorithm for solving variational problems","author":"Weinan","year":"2017"},{"key":"10.1016\/j.cam.2023.115398_b6","series-title":"Lectures on Numerical Methods for Non-Linear Variational Problems","author":"Glowinski","year":"1984"},{"key":"10.1016\/j.cam.2023.115398_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcmds.2022.100023","article-title":"Least squares formulations for some elliptic second order problems, feedforward neural network solutions and convergence results.","volume":"2","author":"Pousin","year":"2022","journal-title":"J. Comput. Math. Data Sci."},{"key":"10.1016\/j.cam.2023.115398_b8","doi-asserted-by":"crossref","DOI":"10.1007\/s00211-022-01294-z","article-title":"Error estimates for deep learning methods in fluid dynamics","volume":"151","author":"Biswas","year":"2022","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2023.115398_b9","doi-asserted-by":"crossref","DOI":"10.1093\/imanum\/drab093","article-title":"Estimates on the generalization error of physics-informed neural networks for approximating PDEs","volume":"43","author":"Mishra","year":"2023","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.cam.2023.115398_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109409","article-title":"Weak adversarial networks for high-dimensional partial differential equations","volume":"411","author":"Zang","year":"2020","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2023.115398_b11","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6420\/abb447","article-title":"Numerical solution of inverse problems by weak adversarial networks","volume":"36","author":"Bao","year":"2020","journal-title":"Inverse Problems"},{"key":"10.1016\/j.cam.2023.115398_b12","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.cma.2023.115892","article-title":"A deep double ritz method (DRM) for solving partial differential equations using neural networks","volume":"405","author":"Uriarte","year":"2023","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.cam.2023.115398_b13","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1007\/s10208-020-09461-0","article-title":"Topological properties of the set of functions generated by neural networks of fixed size","volume":"21","author":"Pertersen","year":"2021","journal-title":"Found. Comput. Math."},{"issue":"34","key":"10.1016\/j.cam.2023.115398_b14","doi-asserted-by":"crossref","first-page":"8505","DOI":"10.1073\/pnas.1718942115","article-title":"Solving high-dimensional partial differential equations using deep learning","volume":"115","author":"Han","year":"2018","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.cam.2023.115398_b15","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1016\/j.jcp.2018.08.029","article-title":"DGM: A deep learning algorithm for solving partial differential equations","volume":"375","author":"Sirignano","year":"2018","journal-title":"J. Comput. Phys."},{"issue":"2","key":"10.1016\/j.cam.2023.115398_b16","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/0893-6080(91)90009-T","article-title":"Approximation capabilities of multilayer feedforward networks","volume":"4","author":"Hornik","year":"1991","journal-title":"Neural Netw."},{"key":"10.1016\/j.cam.2023.115398_b17","series-title":"Elliptic Problems in Nonsmooth Domains","author":"Grisvard","year":"2011"},{"key":"10.1016\/j.cam.2023.115398_b18","series-title":"Partial Differential Equations","volume":"vol 19","author":"awrence","year":"1998"},{"issue":"5","key":"10.1016\/j.cam.2023.115398_b19","doi-asserted-by":"crossref","DOI":"10.1142\/S0219530519410021","article-title":"Error bounds for approximations with deep ReLU neural networks in Ws,p norms","volume":"18","author":"Guhring","year":"2020","journal-title":"Anal. Appl."},{"key":"10.1016\/j.cam.2023.115398_b20","series-title":"Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, Vol. 38","article-title":"The loss surfaces of multilayer networks","author":"Choromanska","year":"2015"},{"key":"10.1016\/j.cam.2023.115398_b21","series-title":"Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks","author":"Berrone","year":"2022"},{"key":"10.1016\/j.cam.2023.115398_b22","doi-asserted-by":"crossref","DOI":"10.1007\/BF02995904","article-title":"Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind","volume":"36","author":"Nitsche","year":"1971","journal-title":"Abh. Math. Semin. Univ. Hambg."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723003424?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723003424?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,10]],"date-time":"2023-09-10T22:25:21Z","timestamp":1694384721000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042723003424"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":22,"alternative-id":["S0377042723003424"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2023.115398","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Some elliptic second order problems and neural network solutions: Existence and error estimates","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2023.115398","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"115398"}}