{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:00:05Z","timestamp":1732042805933},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T00:00:00Z","timestamp":1694044800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cam.2023.115396","type":"journal-article","created":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T09:14:39Z","timestamp":1686906879000},"page":"115396","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Physics-Informed Neural Networks for 2nd order ODEs with sharp gradients"],"prefix":"10.1016","volume":"436","author":[{"given":"Mario","family":"De Florio","sequence":"first","affiliation":[]},{"given":"Enrico","family":"Schiassi","sequence":"additional","affiliation":[]},{"given":"Francesco","family":"Calabr\u00f2","sequence":"additional","affiliation":[]},{"given":"Roberto","family":"Furfaro","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2023.115396_b1","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.jcp.2018.10.045","article-title":"Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations","volume":"378","author":"Raissi","year":"2019","journal-title":"J. Comput. Phys."},{"issue":"5","key":"10.1016\/j.cam.2023.115396_b2","doi-asserted-by":"crossref","first-page":"A3055","DOI":"10.1137\/20M1318043","article-title":"Understanding and mitigating gradient flow pathologies in physics-informed neural networks","volume":"43","author":"Wang","year":"2021","journal-title":"SIAM J. Sci. Comput."},{"issue":"1","key":"10.1016\/j.cam.2023.115396_b3","doi-asserted-by":"crossref","first-page":"37","DOI":"10.3390\/make2010004","article-title":"Deep theory of functional connections: A new method for estimating the solutions of partial differential equations","volume":"2","author":"Leake","year":"2020","journal-title":"Mach. Learn. Knowl. Extr."},{"issue":"4","key":"10.1016\/j.cam.2023.115396_b4","doi-asserted-by":"crossref","first-page":"57","DOI":"10.3390\/math5040057","article-title":"The theory of connections: Connecting points","volume":"5","author":"Mortari","year":"2017","journal-title":"Mathematics"},{"year":"2022","series-title":"The Theory of Functional Connections: A Functional Interpolation. Framework with Applications","author":"Leake","key":"10.1016\/j.cam.2023.115396_b5"},{"issue":"8","key":"10.1016\/j.cam.2023.115396_b6","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.3390\/math8081303","article-title":"The multivariate theory of functional connections: Theory, proofs, and application in partial differential equations","volume":"8","author":"Leake","year":"2020","journal-title":"Mathematics"},{"key":"10.1016\/j.cam.2023.115396_b7","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.neucom.2019.12.099","article-title":"Physics Informed Extreme Learning Machine (PIELM)\u2013A rapid method for the numerical solution of partial differential equations","volume":"391","author":"Dwivedi","year":"2020","journal-title":"Neurocomputing"},{"issue":"1\u20133","key":"10.1016\/j.cam.2023.115396_b8","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cam.2023.115396_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114188","article-title":"Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients","volume":"387","author":"Calabr\u00f2","year":"2021","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"issue":"2","key":"10.1016\/j.cam.2023.115396_b10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10915-021-01650-5","article-title":"Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines","volume":"89","author":"Fabiani","year":"2021","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2023.115396_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114129","article-title":"Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations","volume":"387","author":"Dong","year":"2021","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.cam.2023.115396_b12","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.neucom.2021.06.015","article-title":"Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations","volume":"457","author":"Schiassi","year":"2021","journal-title":"Neurocomputing"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.cam.2023.115396_b13"},{"key":"10.1016\/j.cam.2023.115396_b14","doi-asserted-by":"crossref","DOI":"10.1093\/imanum\/drab032","article-title":"Estimates on the generalization error of physics-informed neural networks for approximating PDEs","author":"Mishra","year":"2022","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.cam.2023.115396_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.anucene.2021.108833","article-title":"Physics-informed neural networks for the point kinetics equations for nuclear reactor dynamics","volume":"167","author":"Schiassi","year":"2022","journal-title":"Ann. Nucl. Energy"},{"issue":"3","key":"10.1016\/j.cam.2023.115396_b16","doi-asserted-by":"crossref","first-page":"834","DOI":"10.2514\/1.A35138","article-title":"Physics-informed neural networks for optimal planar orbit transfers","volume":"59","author":"Schiassi","year":"2022","journal-title":"J. Spacecr. Rockets"},{"issue":"17","key":"10.1016\/j.cam.2023.115396_b17","doi-asserted-by":"crossref","first-page":"2069","DOI":"10.3390\/math9172069","article-title":"Physics-informed neural networks and functional interpolation for data-driven parameters discovery of epidemiological compartmental models","volume":"9","author":"Schiassi","year":"2021","journal-title":"Mathematics"},{"issue":"4","key":"10.1016\/j.cam.2023.115396_b18","doi-asserted-by":"crossref","DOI":"10.1063\/5.0046181","article-title":"Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar\u2013Gross\u2013Krook approximation","volume":"33","author":"De Florio","year":"2021","journal-title":"Phys. Fluids"},{"issue":"6","key":"10.1016\/j.cam.2023.115396_b19","doi-asserted-by":"crossref","DOI":"10.1063\/5.0086649","article-title":"Physics-informed neural networks and functional interpolation for stiff chemical kinetics","volume":"32","author":"De Florio","year":"2022","journal-title":"Chaos"},{"issue":"3","key":"10.1016\/j.cam.2023.115396_b20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00033-022-01767-z","article-title":"Physics-Informed Neural Networks for rarefied-gas dynamics: Poiseuille flow in the BGK approximation","volume":"73","author":"De Florio","year":"2022","journal-title":"Z. Angew. Math. Phys."},{"key":"10.1016\/j.cam.2023.115396_b21","article-title":"Bellman neural networks for the class of optimal control problems with integral quadratic cost","author":"Schiassi","year":"2022","journal-title":"IEEE Trans. Artif. Intell."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723003400?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723003400?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T09:24:48Z","timestamp":1720776288000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042723003400"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":21,"alternative-id":["S0377042723003400"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2023.115396","relation":{},"ISSN":["0377-0427"],"issn-type":[{"type":"print","value":"0377-0427"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Physics-Informed Neural Networks for 2nd order ODEs with sharp gradients","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2023.115396","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"115396"}}