{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T07:03:20Z","timestamp":1719990200867},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100019910","name":"Department of Mathematics, University College London","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100019910","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006382","name":"Universidad de Oviedo","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006382","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014440","name":"Spain Ministry of Science and Innovation","doi-asserted-by":"publisher","award":["MCI-20-PID2019-110955RB-I00"],"id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011033","name":"Agencia Estatal de Investigaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100011033","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.cam.2023.115305","type":"journal-article","created":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T20:40:27Z","timestamp":1683319227000},"page":"115305","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Data-driven state-of-charge prediction of a storage cell using ABC\/GBRT, ABC\/MLP and LASSO machine learning techniques"],"prefix":"10.1016","volume":"433","author":[{"given":"J.C.","family":"\u00c1lvarez Ant\u00f3n","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8880-6348","authenticated-orcid":false,"given":"P.J.","family":"Garc\u00eda-Nieto","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3194-4448","authenticated-orcid":false,"given":"E.","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5974-407X","authenticated-orcid":false,"given":"M.","family":"Gonz\u00e1lez Vega","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8707-8617","authenticated-orcid":false,"given":"C.","family":"Blanco Viejo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2023.115305_b1","unstructured":"Global EV Outlook, France, 2022,"},{"key":"10.1016\/j.cam.2023.115305_b2","series-title":"Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market","author":"Pistoia","year":"2010"},{"key":"10.1016\/j.cam.2023.115305_b3","series-title":"Lithium-Ion Batteries for Electric Vehicles: The U.S. Value Chain","author":"Lowe","year":"2010"},{"key":"10.1016\/j.cam.2023.115305_b4","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.jpowsour.2012.10.060","article-title":"A review on the key issues for lithium-ion battery management in electric vehicles","volume":"226","author":"Lu","year":"2013","journal-title":"J. Power Sources"},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b5","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/TCST.2014.2314333","article-title":"Electrochemical model-based state of charge estimation for li-ion cells","volume":"23","author":"Corno","year":"2015","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b6","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TCST.2016.2557221","article-title":"State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model","volume":"25","author":"Wang","year":"2017","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"12","key":"10.1016\/j.cam.2023.115305_b7","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1088\/0957-0233\/16\/12\/R01","article-title":"State-of-the-art of battery state-of-charge determination","volume":"16","author":"Pop","year":"2005","journal-title":"Meas. Sci. Technol."},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b8","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1109\/TVT.2010.2089647","article-title":"Battery-management system (BMS) and SOC development for electrical vehicles","volume":"60","author":"Cheng","year":"2011","journal-title":"IEEE T. Veh. Technol."},{"key":"10.1016\/j.cam.2023.115305_b9","series-title":"Proceedings of 3rd International Conference on Power Electronics Systems and Applications","first-page":"20","article-title":"Battery management system and control strategy for hybrid and electric vehicle","author":"Divakar","year":"2009"},{"key":"10.1016\/j.cam.2023.115305_b10","series-title":"Battery Management Systems for Large Lithium Ion Battery Packs","author":"Davide","year":"2010"},{"issue":"30","key":"10.1016\/j.cam.2023.115305_b11","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1016\/j.jpowsour.2016.05.121","article-title":"Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment","volume":"324","author":"Lavigne","year":"2016","journal-title":"J. Power Sources"},{"issue":"20","key":"10.1016\/j.cam.2023.115305_b12","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1016\/j.jpowsour.2015.03.157","article-title":"On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation","volume":"293","author":"Tong","year":"2015","journal-title":"J. Power Sources"},{"issue":"10","key":"10.1016\/j.cam.2023.115305_b13","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.jpowsour.2014.06.152","article-title":"Open circuit voltage characterization of lithium-ion batteries","volume":"267","author":"Pattipati","year":"2014","journal-title":"J. Power Sources"},{"key":"10.1016\/j.cam.2023.115305_b14","series-title":"Proceedings of 9th International Conference on Modelling, Identification and Control","first-page":"857","article-title":"Design of battery management system based on DSP for BEV","author":"Liu","year":"2017"},{"key":"10.1016\/j.cam.2023.115305_b15","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1016\/j.apenergy.2013.05.001","article-title":"Adaptative estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination","volume":"111","author":"Waag","year":"2013","journal-title":"Appl. Energ."},{"key":"10.1016\/j.cam.2023.115305_b16","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.jpowsour.2011.10.013","article-title":"A comparative study of equivalent circuit models for li-ion batteries","volume":"198","author":"Hua","year":"2012","journal-title":"J. Power Sources"},{"issue":"2","key":"10.1016\/j.cam.2023.115305_b17","first-page":"384","article-title":"Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery","volume":"24","author":"Bartlett","year":"2016","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"2","key":"10.1016\/j.cam.2023.115305_b18","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1109\/TTE.2015.2512237","article-title":"Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles","volume":"2","author":"Hu","year":"2016","journal-title":"IEEE T. Transp. Electr."},{"key":"10.1016\/j.cam.2023.115305_b19","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/j.ijepes.2014.04.059","article-title":"State of charge estimation for li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation","volume":"62","author":"He","year":"2014","journal-title":"Int. J. Elec. Power"},{"key":"10.1016\/j.cam.2023.115305_b20","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1016\/j.jpowsour.2013.04.040","article-title":"State of charge estimation for lithium ion cells: Design of experiments, nonlinear identification and fuzzy observer design","volume":"238","author":"Hametner","year":"2013","journal-title":"J. Power Sources"},{"key":"10.1016\/j.cam.2023.115305_b21","doi-asserted-by":"crossref","first-page":"10069","DOI":"10.1109\/ACCESS.2018.2797976","article-title":"Neural network approach for estimating state of charge of lithiumion battery using backtracking search algorithm","volume":"6","author":"Hannan","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.cam.2023.115305_b22","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.jpowsour.2014.07.116","article-title":"A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation","volume":"270","author":"Klass","year":"2014","journal-title":"J. Power Sources"},{"key":"10.1016\/j.cam.2023.115305_b23","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1016\/j.jpowsour.2014.07.016","article-title":"State-of-charge estimation for battery management system using optimized support vector machine for regression","volume":"269","author":"Hu","year":"2014","journal-title":"J. Power Sources"},{"key":"10.1016\/j.cam.2023.115305_b24","series-title":"Classification and Regression Trees","author":"Breiman","year":"1984"},{"key":"10.1016\/j.cam.2023.115305_b25","series-title":"Machine Learning: An Artificial Intelligence Approach","author":"Michalski","year":"1983"},{"key":"10.1016\/j.cam.2023.115305_b26","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","article-title":"A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm","volume":"39","author":"Karaboga","year":"2007","journal-title":"J. Global Optim."},{"key":"10.1016\/j.cam.2023.115305_b27","series-title":"Bee-Inspired Protocol Engineering","author":"Farooq","year":"2009"},{"key":"10.1016\/j.cam.2023.115305_b28","series-title":"Ant Colony Optimization, Bradford Publisher","author":"Dorigo","year":"2004"},{"key":"10.1016\/j.cam.2023.115305_b29","series-title":"Evolutionary Optimization Algorithms","author":"Simon","year":"2013"},{"key":"10.1016\/j.cam.2023.115305_b30","series-title":"Second-Order Methods for Neural Networks: Perspectives in Neural Computing","author":"Shepherd","year":"1997"},{"key":"10.1016\/j.cam.2023.115305_b31","series-title":"Statistical Learning with Sparsity: The Lasso and Generalizations","author":"Hastie","year":"2016"},{"key":"10.1016\/j.cam.2023.115305_b32","series-title":"Electric Vehicle Battery Test Procedures Manual, rev. 2","author":"U.S. Department of Energy","year":"1996"},{"key":"10.1016\/j.cam.2023.115305_b33","unstructured":"PEC, Technical Reference Manual SBTXX50, Leuven, Belgium, 2012."},{"key":"10.1016\/j.cam.2023.115305_b34","series-title":"Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning","author":"A.J.","year":"2013"},{"key":"10.1016\/j.cam.2023.115305_b35","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"},{"issue":"2","key":"10.1016\/j.cam.2023.115305_b36","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1214\/aos\/1016218223","article-title":"Additive logistic regression: a statistical view of boosting","volume":"28","author":"Friedman","year":"2000","journal-title":"Ann. Statist."},{"issue":"5","key":"10.1016\/j.cam.2023.115305_b37","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1214\/aos\/1013203451","article-title":"Greedy function approximation: A gradient boosting machine","volume":"29","author":"Friedman","year":"2001","journal-title":"Ann. Statist."},{"issue":"4","key":"10.1016\/j.cam.2023.115305_b38","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/S0167-9473(01)00065-2","article-title":"Stochastic gradient boosting","volume":"38","author":"Friedman","year":"2002","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.cam.2023.115305_b39","series-title":"Nonlinear Estimation and Classification","first-page":"149","article-title":"The boosting approach to machine learning an overview","volume":"vol. 171","author":"Schapire","year":"2003"},{"issue":"4","key":"10.1016\/j.cam.2023.115305_b40","first-page":"477","article-title":"Boosting algorithms: regularization , prediction and model fitting","volume":"22","author":"B\u00fchlmann","year":"2007","journal-title":"Stat. Sci."},{"key":"10.1016\/j.cam.2023.115305_b41","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Hastie","year":"2017"},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b42","first-page":"419","article-title":"The evolution of boosting algorithms: From machine learning to statistical modelling","volume":"6","author":"Mayr","year":"2014","journal-title":"Method Inform. Med."},{"issue":"2","key":"10.1016\/j.cam.2023.115305_b43","first-page":"428","article-title":"Extending statistical boosting: An overview of recent methodological developments","volume":"6","author":"Mayr","year":"2014","journal-title":"Method Inform. Med."},{"issue":"2","key":"10.1016\/j.cam.2023.115305_b44","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1016\/j.ijforecast.2013.07.005","article-title":"A gradient boosting approach to the kaggle load forecasting competition","volume":"30","author":"Taieb","year":"2014","journal-title":"Int. J. Forecast."},{"key":"10.1016\/j.cam.2023.115305_b45","doi-asserted-by":"crossref","first-page":"745","DOI":"10.1016\/j.ijforecast.2017.02.003","article-title":"Predicting recessions with boosted regression trees","volume":"33","author":"D\u00f6pke","year":"2017","journal-title":"Int. J. Forecast."},{"key":"10.1016\/j.cam.2023.115305_b46","series-title":"Generalized boosted models: a guide to the GBM package","author":"Ridgeway","year":"2007"},{"key":"10.1016\/j.cam.2023.115305_b47","unstructured":"D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Turkey, 2005."},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b48","first-page":"68","article-title":"Algorithms simulating bee swarm intelligence","volume":"31","author":"Karaboga","year":"2009","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.cam.2023.115305_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109641","article-title":"Application of artificial bee colony programming techniques for predicting the compressive strength of recycled aggregate concrete","volume":"130","author":"Moghaddas","year":"2022","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.cam.2023.115305_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2022.109094","article-title":"The optimization of wind turbine placement using a binary artificial bee colony algorithm with multi-dimensional updates","volume":"216","author":"Hakli","year":"2023","journal-title":"Electr. Power Syst. Res."},{"key":"10.1016\/j.cam.2023.115305_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2023.109882","article-title":"A novel hybrid BPNN model based on adaptive evolutionary artificial bee colony algorithm for water quality index prediction","volume":"146","author":"Chen","year":"2023","journal-title":"Ecol. Indic."},{"issue":"1","key":"10.1016\/j.cam.2023.115305_b52","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s10462-012-9328-0","article-title":"A comprehensive survey: artificial bee colony (ABC) algorithm and applications","volume":"42","author":"Karaboga","year":"2014","journal-title":"Artif. Intell. Rev."},{"issue":"3","key":"10.1016\/j.cam.2023.115305_b53","first-page":"1","article-title":"Collective decision-making in honey bee foraging dynamics","volume":"9","author":"Tereshko","year":"2005","journal-title":"Comput. Inform. Syst."},{"key":"10.1016\/j.cam.2023.115305_b54","series-title":"Hybrid Metaheuristics: An Emerging Approach To Optimization","author":"Blum","year":"2008"},{"key":"10.1016\/j.cam.2023.115305_b55","series-title":"Neural Networks: A Comprehensive Foundation","author":"Haykin","year":"1999"},{"key":"10.1016\/j.cam.2023.115305_b56","series-title":"Feed-Forward Neural Network Methodology","author":"Fine","year":"1999"},{"key":"10.1016\/j.cam.2023.115305_b57","series-title":"Fundamentals of Artificial Neural Networks","author":"Hassoun","year":"1995"},{"key":"10.1016\/j.cam.2023.115305_b58","series-title":"All of Statistics: A Concise Course in Statistical Inference","author":"Wasserman","year":"2003"},{"key":"10.1016\/j.cam.2023.115305_b59","series-title":"Statistics","author":"Freedman","year":"2007"},{"key":"10.1016\/j.cam.2023.115305_b60","series-title":"Comprehensive R archive network","year":"2013"},{"key":"10.1016\/j.cam.2023.115305_b61","series-title":"Gbm: Generalized boosted regression models, r package version 2.1.1","author":"Ridgeway","year":"2017"},{"key":"10.1016\/j.cam.2023.115305_b62","series-title":"Artificial Bee Colony (ABC) Algorithm","author":"Karaboga","year":"2017"},{"key":"10.1016\/j.cam.2023.115305_b63","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"6","key":"10.1016\/j.cam.2023.115305_b64","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.pnsc.2018.11.002","article-title":"Temperature effect and thermal impact in lithium-ion batteries: A review","volume":"28","author":"Ma","year":"2018","journal-title":"Prog. Nat. Sci. Mater. Int."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723002492?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042723002492?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,12]],"date-time":"2024-02-12T22:51:31Z","timestamp":1707778291000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042723002492"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":64,"alternative-id":["S0377042723002492"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2023.115305","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Data-driven state-of-charge prediction of a storage cell using ABC\/GBRT, ABC\/MLP and LASSO machine learning techniques","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2023.115305","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"115305"}}