{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T06:56:26Z","timestamp":1719989786228},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.cam.2022.114628","type":"journal-article","created":{"date-parts":[[2022,7,28]],"date-time":"2022-07-28T02:03:37Z","timestamp":1658973817000},"page":"114628","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["An inexact symmetric ADMM algorithm with indefinite proximal term for sparse signal recovery and image restoration problems"],"prefix":"10.1016","volume":"417","author":[{"given":"Fan","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Zhongming","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.cam.2022.114628_b1","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"issue":"6","key":"10.1016\/j.cam.2022.114628_b2","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s10208-009-9045-5","article-title":"Exact matrix completion via convex optimization","volume":"9","author":"Cand\u00e8s","year":"2009","journal-title":"Found. Comput. Math."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b3","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1137\/S003614450037906X","article-title":"Atomic decomposition by basis pursuit","volume":"43","author":"Chen","year":"2001","journal-title":"SIAM Rev."},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b4","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1137\/070697835","article-title":"Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization","volume":"52","author":"Recht","year":"2010","journal-title":"SIAM Rev."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b5","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1137\/100781894","article-title":"Recovering low-rank and sparse components of matrices from incomplete and noisy observations","volume":"21","author":"Tao","year":"2011","journal-title":"SIAM J. Optim."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b6","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/0898-1221(76)90003-1","article-title":"A dual algorithm for the solution of nonlinear variational problems via finite element approximation","volume":"2","author":"Gabay","year":"1976","journal-title":"Comput. Math. Appl."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b7","first-page":"41","article-title":"par \u00e9l\u00e9ments finis d\u2019ordre un, et la r\u00e9solution, par p\u00e9nalisation-dualit\u00e9 d\u2019une classe de probl\u00e8mes de Dirichlet non lin\u00e9aires","volume":"9","author":"Glowinski","year":"1975","journal-title":"Rev. Fr. Autom. Inform. Rech. Opr. (RAIRO)"},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b8","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1007\/BF01581204","article-title":"On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators","volume":"55","author":"Eckstein","year":"1992","journal-title":"Math. Program."},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b9","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1137\/13090849X","article-title":"A strictly contractive Peaceman-Rachford splitting method for convex programming","volume":"24","author":"He","year":"2014","journal-title":"SIAM J. Optim."},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b10","doi-asserted-by":"crossref","first-page":"1467","DOI":"10.1137\/15M1044448","article-title":"Convergence study on the symmetric version of ADMM with larger step sizes","volume":"9","author":"He","year":"2016","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.cam.2022.114628_b11","series-title":"A semi-proximal-based strictly contractive Peaceman-Rachford splitting method","first-page":"20","author":"Gu","year":"2021"},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b12","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s10589-017-9971-0","article-title":"Generalized symmetric ADMM for separable convex optimization","volume":"70","author":"Bai","year":"2018","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b13","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1007\/s40305-019-00247-y","article-title":"An LQP-based symmetric alternating direction method of multipliers with larger step sizes","volume":"7","author":"Wu","year":"2019","journal-title":"J. Oper. Res. Soc. China"},{"key":"10.1016\/j.cam.2022.114628_b14","article-title":"Convergence on a symmetric accelerated stochastic ADMM with larger stepsizes","author":"Bai","year":"2022","journal-title":"CSIAM Trans. Appl. Math."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b15","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s40305-021-00352-x","article-title":"The developments of proximal point algorithms","volume":"10","author":"Cai","year":"2022","journal-title":"J. Oper. Res. Soc. China"},{"issue":"4","key":"10.1016\/j.cam.2022.114628_b16","doi-asserted-by":"crossref","first-page":"795","DOI":"10.1007\/s11425-016-9184-4","article-title":"O(1\/t) complexity analysis of the generalized alternating direction method of multipliers","volume":"62","author":"Cai","year":"2019","journal-title":"Sci. China Math."},{"issue":"8","key":"10.1016\/j.cam.2022.114628_b17","doi-asserted-by":"crossref","first-page":"1220","DOI":"10.1007\/s10851-018-0808-y","article-title":"Symmetric Gauss\u2013Seidel technique-based alternating direction methods of multipliers for transform invariant low-rank textures problem","volume":"60","author":"Ding","year":"2018","journal-title":"J. Math. Imaging Vision"},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40305-021-00368-3","article-title":"A survey on some recent developments of alternating direction method of multipliers","volume":"10","author":"Han","year":"2022","journal-title":"J. Oper. Res. Soc. China"},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b19","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1287\/moor.2017.0875","article-title":"Linear rate convergence of the alternating direction method of multipliers for convex composite programming","volume":"43","author":"Han","year":"2018","journal-title":"Math. Oper. Res."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b20","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1007\/s10957-012-0003-z","article-title":"A note on the alternating direction method of multipliers","volume":"155","author":"Han","year":"2012","journal-title":"J. Optim. Theory Appl."},{"issue":"6","key":"10.1016\/j.cam.2022.114628_b21","doi-asserted-by":"crossref","first-page":"3446","DOI":"10.1137\/120886753","article-title":"Local linear convergence of the alternating direction method of multipliers for quadratic programs","volume":"51","author":"Han","year":"2013","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"10.1016\/j.cam.2022.114628_b22","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1080\/00207160.2018.1435864","article-title":"A proximal Peaceman\u2013Rachford splitting method for solving the multi-block separable convex minimization problems","volume":"96","author":"Wu","year":"2019","journal-title":"Int. J. Comput. Math."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b23","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1007\/s10851-011-0314-y","article-title":"An inexact alternating directions algorithm for constrained total variation regularized compressive sensing problems","volume":"44","author":"Xiao","year":"2012","journal-title":"J. Math. Imaging Vision"},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b24","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1137\/140974237","article-title":"Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems","volume":"54","author":"Yang","year":"2016","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b25","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s101070100280","article-title":"A new inexact alternating directions method for monotone variational inequalities","volume":"92","author":"He","year":"2002","journal-title":"Math. Program."},{"issue":"281","key":"10.1016\/j.cam.2022.114628_b26","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1090\/S0025-5718-2012-02598-1","article-title":"Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization","volume":"82","author":"Yang","year":"2013","journal-title":"Math. Comp."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b27","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s12532-015-0078-2","article-title":"Generalized alternating direction method of multipliers: new theoretical insights and applications","volume":"7","author":"Fang","year":"2015","journal-title":"Math. Program. Comput."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b28","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1137\/14099509X","article-title":"A proximal strictly contractive Peaceman\u2013Rachford splitting method for convex programming with applications to imaging","volume":"8","author":"Li","year":"2015","journal-title":"SIAM J. Imaging Sci."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b29","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s10589-019-00152-3","article-title":"Optimally linearizing the alternating direction method of multipliers for convex programming","volume":"75","author":"He","year":"2020","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b30","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1137\/140999025","article-title":"A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization","volume":"26","author":"Li","year":"2016","journal-title":"SIAM J. Optim."},{"issue":"324","key":"10.1016\/j.cam.2022.114628_b31","doi-asserted-by":"crossref","first-page":"1867","DOI":"10.1090\/mcom\/3506","article-title":"A linearly convergent majorized ADMM with indefinite proximal terms for convex composite programming and its applications","volume":"89","author":"Zhang","year":"2020","journal-title":"Math. Comp."},{"issue":"8","key":"10.1016\/j.cam.2022.114628_b32","doi-asserted-by":"crossref","first-page":"1759","DOI":"10.1080\/02331934.2020.1751158","article-title":"The indefinite proximal point algorithms for maximal monotone operators","volume":"70","author":"Jiang","year":"2021","journal-title":"Optimization"},{"issue":"4","key":"10.1016\/j.cam.2022.114628_b33","doi-asserted-by":"crossref","first-page":"1415","DOI":"10.1007\/s11075-019-00731-9","article-title":"Convergence analysis of positive-indefinite proximal ADMM with a Glowinski\u2019s relaxation factor","volume":"83","author":"Chen","year":"2020","journal-title":"Numer. Algorithms"},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b34","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1007\/s10589-020-00206-x","article-title":"Convergence study of indefinite proximal ADMM with a relaxation factor","volume":"77","author":"Tao","year":"2020","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b35","doi-asserted-by":"crossref","first-page":"835","DOI":"10.3934\/jimo.2018181","article-title":"Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization","volume":"16","author":"Jiang","year":"2020","journal-title":"J. Ind. Manag. Optim."},{"key":"10.1016\/j.cam.2022.114628_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2020.112772","article-title":"Inertial proximal strictly contractive Peaceman-Rachford splitting method with an indefinite term for convex optimization","volume":"374","author":"Deng","year":"2020","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b37","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s10107-016-1007-5","article-title":"An efficient inexact symmetric Gauss\u2013Seidel based majorized ADMM for high-dimensional convex composite conic programming","volume":"161","author":"Chen","year":"2017","journal-title":"Math. Program."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b38","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1007\/s10589-017-9911-z","article-title":"Approximate ADMM algorithms derived from Lagrangian splitting","volume":"68","author":"Eckstein","year":"2017","journal-title":"Comput. Optim. Appl."},{"issue":"4","key":"10.1016\/j.cam.2022.114628_b39","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1023\/A:1008777829180","article-title":"A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator","volume":"7","author":"Solodov","year":"1999","journal-title":"Set-Valued Anal."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b40","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1287\/moor.25.2.214.12222","article-title":"An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions","volume":"25","author":"Solodov","year":"2000","journal-title":"Math. Oper. Res."},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b41","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1007\/s11590-016-1021-9","article-title":"An inexact alternating direction method of multipliers with relative error criteria","volume":"11","author":"Xie","year":"2017","journal-title":"Optim. Lett."},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b42","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1007\/s10589-018-0022-2","article-title":"On inexact ADMMs with relative error criteria","volume":"71","author":"Xie","year":"2018","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"10.1016\/j.cam.2022.114628_b43","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1007\/s10107-017-1160-5","article-title":"Relative-error approximate versions of Douglas\u2013Rachford splitting and special cases of the ADMM","volume":"170","author":"Eckstein","year":"2018","journal-title":"Math. Program."},{"key":"10.1016\/j.cam.2022.114628_b44","series-title":"An inexact version of the symmetric proximal ADMM for solving separable convex optimization","first-page":"26","author":"Adona","year":"2020"},{"issue":"3","key":"10.1016\/j.cam.2022.114628_b45","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1137\/16M1082305","article-title":"Accelerated first-order primal\u2013dual proximal methods for linearly constrained composite convex programming","volume":"27","author":"Xu","year":"2017","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.cam.2022.114628_b46","series-title":"Numerical Optimization","author":"Nocedal","year":"2006"},{"issue":"1","key":"10.1016\/j.cam.2022.114628_b47","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Found. Trends Mach. Learn."},{"issue":"1\u20134","key":"10.1016\/j.cam.2022.114628_b48","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Physica D"},{"issue":"9","key":"10.1016\/j.cam.2022.114628_b49","doi-asserted-by":"crossref","first-page":"2590","DOI":"10.1016\/j.cam.2011.12.017","article-title":"Some projection methods with the BB step sizes for variational inequalities","volume":"236","author":"He","year":"2012","journal-title":"J. Comput. Appl. Math."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042722003144?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042722003144?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,9]],"date-time":"2023-02-09T21:42:50Z","timestamp":1675978970000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042722003144"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":49,"alternative-id":["S0377042722003144"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2022.114628","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An inexact symmetric ADMM algorithm with indefinite proximal term for sparse signal recovery and image restoration problems","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2022.114628","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"114628"}}