{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:57:33Z","timestamp":1726171053100},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,28]],"date-time":"2021-10-28T00:00:00Z","timestamp":1635379200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.cam.2021.113906","type":"journal-article","created":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T21:01:43Z","timestamp":1636491703000},"page":"113906","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["An inverse problem for Bingham type fluids"],"prefix":"10.1016","volume":"404","author":[{"given":"Jing","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jiahong","family":"He","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3299-9168","authenticated-orcid":false,"given":"Stanis\u0142aw","family":"Mig\u00f3rski","sequence":"additional","affiliation":[]},{"given":"Sylwia","family":"Dudek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2021.113906_b1","series-title":"An Introduction To Fluid Dynamics","author":"Batchelor","year":"2000"},{"key":"10.1016\/j.cam.2021.113906_b2","series-title":"Mechanics and Mathematics of Fluids of the Differential Type","author":"Cioranescu","year":"2016"},{"key":"10.1016\/j.cam.2021.113906_b3","series-title":"Hemodynamical Flows Modeling, Analysis and Simulation","author":"Galdi","year":"2008"},{"key":"10.1016\/j.cam.2021.113906_b4","doi-asserted-by":"crossref","DOI":"10.3389\/fphy.2019.00071","article-title":"Determination of the effective viscosity of non-Newtonian fluids flowing through porous media","volume":"7","author":"Eberhard","year":"2019","journal-title":"Front. Phys."},{"key":"10.1016\/j.cam.2021.113906_b5","doi-asserted-by":"crossref","first-page":"309","DOI":"10.6028\/bulletin.304","article-title":"An investigation of the laws of plastic flow","volume":"13","author":"Bingham","year":"1916","journal-title":"Bull. Bur. Stand."},{"key":"10.1016\/j.cam.2021.113906_b6","series-title":"Inequalities in Mechanics and Physics","author":"Duvaut","year":"1976"},{"key":"10.1016\/j.cam.2021.113906_b7","first-page":"371","article-title":"Variational analysis of a frictional contact problem for the Bingham fluid","volume":"9","author":"Awbi","year":"1999","journal-title":"Int. J. Appl. Math. Comp. Sci."},{"key":"10.1016\/j.cam.2021.113906_b8","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1080\/00036819908840754","article-title":"A contact problem for Bingham fluid with friction","volume":"72","author":"Awbi","year":"1999","journal-title":"Appl. Anal."},{"key":"10.1016\/j.cam.2021.113906_b9","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1007\/s00009-020-01596-2","article-title":"On the weak solvability via Lagrange multipliers for a Bingham model","volume":"17","author":"Cojocaru","year":"2020","journal-title":"Mediterr. J. Math."},{"key":"10.1016\/j.cam.2021.113906_b10","doi-asserted-by":"crossref","DOI":"10.1155\/2017\/7548328","article-title":"On flows of Bingham-type fluids with threshold slippage","author":"Baranovskii","year":"2017","journal-title":"Adv. Math. Phys."},{"key":"10.1016\/j.cam.2021.113906_b11","series-title":"Quelques m\u00e9thodes de resolution des probl\u00e9mes aux limites non lin\u00e9aires","author":"Lions","year":"1969"},{"key":"10.1016\/j.cam.2021.113906_b12","doi-asserted-by":"crossref","first-page":"2625","DOI":"10.1007\/s00033-015-0545-7","article-title":"Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions","volume":"66","author":"Dudek","year":"2015","journal-title":"Z. Angew. Math. Phys."},{"key":"10.1016\/j.cam.2021.113906_b13","doi-asserted-by":"crossref","first-page":"2192","DOI":"10.1080\/00036811.2016.1209743","article-title":"Stationary oberbeck-Boussinesq model of generalized Newtonian fluid governed by multivalued partial differential equations","volume":"96","author":"Dudek","year":"2017","journal-title":"Appl. Anal."},{"key":"10.1016\/j.cam.2021.113906_b14","doi-asserted-by":"crossref","first-page":"1317","DOI":"10.1007\/s00021-018-0367-4","article-title":"Evolutionary oseen model for generalized Newtonian fluid with multivalued nonmonotone friction law","volume":"20","author":"Dudek","year":"2018","journal-title":"J. Math. Fluid Mech."},{"key":"10.1016\/j.cam.2021.113906_b15","doi-asserted-by":"crossref","DOI":"10.1002\/zamm.201900112","article-title":"A new class of variational\u2013hemivariational inequalities for steady oseen flow with unilateral and frictional type boundary conditions","volume":"100","author":"Mig\u00f3rski","year":"2020","journal-title":"Z. Angew. Math. Mech."},{"key":"10.1016\/j.cam.2021.113906_b16","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.jmaa.2004.12.033","article-title":"Hemivariational inequalities for stationary Navier\u2013Stokes equations","volume":"306","author":"Mig\u00f3rski","year":"2005","journal-title":"J. Math. Anal. Appl."},{"key":"10.1016\/j.cam.2021.113906_b17","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1088\/0266-5611\/14\/5\/005","article-title":"Inverse coefficient problems for elliptic variational inequalities with a nonlinear monotone operator","volume":"14","author":"Hasanov","year":"1998","journal-title":"Inverse Problems"},{"key":"10.1016\/j.cam.2021.113906_b18","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1080\/00036810902889559","article-title":"An inverse coefficient problem for a parabolic hemivariational inequality","volume":"89","author":"Mig\u00f3rski","year":"2010","journal-title":"Appl. Anal."},{"key":"10.1016\/j.cam.2021.113906_b19","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1590\/S1678-58782010000200013","article-title":"Identification of non-Newtonian rheological parameter through an inverse formulation","volume":"32","author":"Nascimento","year":"2010","journal-title":"J. Braz. Soc. Mech. Sci. Eng."},{"key":"10.1016\/j.cam.2021.113906_b20","doi-asserted-by":"crossref","DOI":"10.1098\/rsta.2019.0284","article-title":"Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids","volume":"378","author":"Ionescu","year":"2020","journal-title":"Phil. Trans. R. Soc. A"},{"key":"10.1016\/j.cam.2021.113906_b21","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.cam.2015.06.016","article-title":"Galerkin method for constrained variational equations and a collage-based approach to related inverse problems","volume":"292","author":"Berenguer","year":"2016","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113906_b22","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/764643","article-title":"Inverse problems via the generalized collage theorem for vector-valued Lax\u2013Milgram-based variational problems","volume":"2015","author":"Kunze","year":"2015","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.cam.2021.113906_b23","doi-asserted-by":"crossref","first-page":"745","DOI":"10.1088\/0266-5611\/15\/3\/308","article-title":"Solving inverse problems for ordinary differential equations using the picard contraction mapping","volume":"15","author":"Kunze","year":"1999","journal-title":"Inverse Problems"},{"key":"10.1016\/j.cam.2021.113906_b24","article-title":"A minimax approach for inverse inequalities","volume":"90","author":"Montiel\u00a0L\u00f3pez","year":"2020","journal-title":"Comm. Nonlinear Sci. Numer. Simul."},{"key":"10.1016\/j.cam.2021.113906_b25","series-title":"Optimization and Nonsmooth Analysis","author":"Clarke","year":"1983"},{"key":"10.1016\/j.cam.2021.113906_b26","series-title":"An Introduction To NonLiNear Analysis: Theory","author":"Denkowski","year":"2003"},{"key":"10.1016\/j.cam.2021.113906_b27","series-title":"An Introduction To Nonlinear Analysis: Applications","author":"Denkowski","year":"2003"},{"key":"10.1016\/j.cam.2021.113906_b28","series-title":"Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Vol. 26","article-title":"Advances in mechanics and mathematics","author":"Mig\u00f3rski","year":"2013"},{"key":"10.1016\/j.cam.2021.113906_b29","series-title":"Mathematical Theory of Hemivariational Inequalities and Applications","author":"Naniewicz","year":"1995"},{"key":"10.1016\/j.cam.2021.113906_b30","first-page":"389","article-title":"Memoire sur les lois du mouvement des fluides","volume":"6","author":"Navier","year":"1823","journal-title":"Mem. Acad. R. Sci. Inst. A."},{"key":"10.1016\/j.cam.2021.113906_b31","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1007\/s002050050164","article-title":"Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions","volume":"148","author":"Le\u00a0Roux","year":"1999","journal-title":"Arch. Ration. Mech. Anal."},{"key":"10.1016\/j.cam.2021.113906_b32","first-page":"199","article-title":"A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions","volume":"888","author":"Fujita","year":"1994","journal-title":"RIMS Kokyuroku"},{"key":"10.1016\/j.cam.2021.113906_b33","first-page":"1","article-title":"Non stationary Stokes flows under leak boundary conditions of friction type","volume":"19","author":"Fujita","year":"2001","journal-title":"J. Comput. Math."},{"key":"10.1016\/j.cam.2021.113906_b34","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/S0377-0427(02)00520-4","article-title":"A coherent analysis of Stokes flows under boundary conditions of friction type","volume":"149","author":"Fujita","year":"2002","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2021.113906_b35","series-title":"On the Stokes Equations with the Leak and Slip Boundary Conditions of Friction Type: Regularity of Solutions, Vol. 40","first-page":"345","author":"Saito","year":"2004"},{"key":"10.1016\/j.cam.2021.113906_b36","series-title":"Regularity of Solutions to the Stokes Equation Under a Certain Nonlinear Boundary Condition","first-page":"73","volume":"vol. 223","author":"Saito","year":"2001"},{"key":"10.1016\/j.cam.2021.113906_b37","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1007\/s00021-016-0248-7","article-title":"The Navier\u2013Stokes equations under a unilateral boundary condition of Signorini\u2019s type","volume":"18","author":"Zhou","year":"2016","journal-title":"J. Math. Fluid Mech."},{"key":"10.1016\/j.cam.2021.113906_b38","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.apnum.2016.03.002","article-title":"Unilateral problem for the Stokes equations: The well-posedness and finite element approximation","volume":"105","author":"Saito","year":"2016","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.cam.2021.113906_b39","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1051\/m2an\/1998320708431","article-title":"A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-Newtonian flow","volume":"32","author":"Bao","year":"1998","journal-title":"RAIRO-Mod\u00c9l. Math. Anal. Num\u00e9r."},{"key":"10.1016\/j.cam.2021.113906_b40","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1007\/s002110050071","article-title":"Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow","volume":"68","author":"Barrett","year":"1994","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2021.113906_b41","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10659-016-9600-7","article-title":"A class of variational-hemivariational inequalities in reflexive Banach spaces","volume":"127","author":"Mig\u00f3rski","year":"2017","journal-title":"J. Elast."},{"key":"10.1016\/j.cam.2021.113906_b42","series-title":"Variational\u2013Hemivariational Inequalities with Applications","author":"Sofonea","year":"2018"},{"key":"10.1016\/j.cam.2021.113906_b43","series-title":"Convexity and Optimization in Banach Spaces","author":"Barbu","year":"2012"}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037704272100529X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037704272100529X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,30]],"date-time":"2022-06-30T06:41:52Z","timestamp":1656571312000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S037704272100529X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":43,"alternative-id":["S037704272100529X"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2021.113906","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An inverse problem for Bingham type fluids","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2021.113906","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"113906"}}