{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:43:21Z","timestamp":1726850601673},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.cam.2020.113330","type":"journal-article","created":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T05:00:44Z","timestamp":1609477244000},"page":"113330","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["The virtual element method for general elliptic hemivariational inequalities"],"prefix":"10.1016","volume":"389","author":[{"given":"Fei","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bangmin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Weimin","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2020.113330_b1","series-title":"Inequalities in Mechanics and Physics","author":"Duvaut","year":"1976"},{"key":"10.1016\/j.cam.2020.113330_b2","series-title":"Numerical Analysis of Variational Inequalities","author":"Glowinski","year":"1981"},{"key":"10.1016\/j.cam.2020.113330_b3","series-title":"Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems","author":"Baiocchi","year":"1984"},{"key":"10.1016\/j.cam.2020.113330_b4","series-title":"Numerical Methods for Nonlinear Variational Problems","author":"Glowinski","year":"1984"},{"key":"10.1016\/j.cam.2020.113330_b5","series-title":"Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods","author":"Kikuchi","year":"1988"},{"key":"10.1016\/j.cam.2020.113330_b6","series-title":"Solution of Variational Inequalities in Mechanics","author":"Hlav\u00e1\u010dek","year":"1988"},{"key":"10.1016\/j.cam.2020.113330_b7","first-page":"160","article-title":"Nonconvex energy functions, hemivariational inequalities and substationary principles","volume":"42","author":"Panagiotopoulos","year":"1983","journal-title":"Acta Mech."},{"key":"10.1016\/j.cam.2020.113330_b8","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1090\/S0002-9947-1975-0367131-6","article-title":"Generalized gradients and applications","volume":"205","author":"Clarke","year":"1975","journal-title":"Trans. Amer. Math. Soc."},{"key":"10.1016\/j.cam.2020.113330_b9","series-title":"Optimization and Nonsmooth Analysis","author":"Clarke","year":"1983"},{"key":"10.1016\/j.cam.2020.113330_b10","series-title":"Hemivariational Inequalities, Applications in Mechanics and Engineering","author":"Panagiotopoulos","year":"1993"},{"key":"10.1016\/j.cam.2020.113330_b11","series-title":"Mathematical Theory of Hemivariational Inequalities and Applications","author":"Naniewicz","year":"1995"},{"key":"10.1016\/j.cam.2020.113330_b12","series-title":"Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications","author":"Carl","year":"2007"},{"key":"10.1016\/j.cam.2020.113330_b13","series-title":"Models and Analysis of Contact Problems","article-title":"Nonlinear inclusions and hemivariational inequalities","volume":"vol. 26","author":"Mig\u00f3rski","year":"2013"},{"key":"10.1016\/j.cam.2020.113330_b14","series-title":"Variational\u2013Hemivariational Inequalities with Applications","author":"Sofonea","year":"2018"},{"key":"10.1016\/j.cam.2020.113330_b15","series-title":"Finite Element Method for Hemivariational Inequalities","author":"Haslinger","year":"1999"},{"key":"10.1016\/j.cam.2020.113330_b16","doi-asserted-by":"crossref","first-page":"3891","DOI":"10.1137\/140963248","article-title":"A class of variational\u2013hemivariational inequalities with applications to frictional contact problems","volume":"46","author":"Han","year":"2014","journal-title":"SIAM J. Math. Anal."},{"key":"10.1016\/j.cam.2020.113330_b17","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1017\/S0962492919000023","article-title":"Numerical analysis of hemivariational inequalities in contact mechanics","volume":"28","author":"Han","year":"2019","journal-title":"Acta Numer."},{"key":"10.1016\/j.cam.2020.113330_b18","first-page":"119","article-title":"Basic principles of virtual element methods","volume":"23","author":"Beir\u00e3o\u00a0da Veiga","year":"2013","journal-title":"Math. Models Methods Appl. Sci."},{"key":"10.1016\/j.cam.2020.113330_b19","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1137\/120874746","article-title":"Virtual elements for linear elasticity problems","volume":"51","author":"Beir\u00e3o\u00a0da Veiga","year":"2013","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2020.113330_b20","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.cma.2014.05.005","article-title":"On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes","volume":"282","author":"Gain","year":"2014","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.cam.2020.113330_b21","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1007\/s00466-017-1404-5","article-title":"Arbitrary order 2d virtual elements for polygonal meshes: part I. elastic problem","volume":"60","author":"Artioli","year":"2017","journal-title":"Comput. Mech."},{"key":"10.1016\/j.cam.2020.113330_b22","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.jcp.2018.11.004","article-title":"The nonconforming virtual element method for elasticity problems","volume":"378","author":"Zhang","year":"2019","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2020.113330_b23","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1007\/s00466-016-1331-x","article-title":"A virtual element method for contact","volume":"58","author":"Wriggers","year":"2016","journal-title":"Comput. Mech."},{"key":"10.1016\/j.cam.2020.113330_b24","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.aml.2018.06.002","article-title":"Virtual element method for simplified friction problem","volume":"85","author":"Wang","year":"2018","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.cam.2020.113330_b25","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1093\/imanum\/dry055","article-title":"Virtual element methods for obstacle problem","volume":"40","author":"Wang","year":"2020","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.cam.2020.113330_b26","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1007\/s10915-019-00929-y","article-title":"Virtual element methods for elliptic variational inequalities of the second kind","volume":"80","author":"Feng","year":"2019","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2020.113330_b27","doi-asserted-by":"crossref","DOI":"10.1093\/imanum\/draa005","article-title":"Conforming and nonconforming virtual element methods for a kirchhoff plate contact problem","author":"Wang","year":"2020","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.cam.2020.113330_b28","doi-asserted-by":"crossref","first-page":"2388","DOI":"10.1007\/s10915-019-01090-2","article-title":"Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics","volume":"81","author":"Feng","year":"2019","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2020.113330_b29","series-title":"An Introduction to Nonlinear Analysis: Theory","author":"Denkowski","year":"2003"},{"key":"10.1016\/j.cam.2020.113330_b30","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1137\/16M1072085","article-title":"Numerical analysis of elliptic hemivariational inequalities","volume":"55","author":"Han","year":"2017","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2020.113330_b31","doi-asserted-by":"crossref","first-page":"2557","DOI":"10.1142\/S021820251750052X","article-title":"Stability analysis for the virtual element method","volume":"27","author":"Beir\u00e3o\u00a0da Veiga","year":"2017","journal-title":"Math. Models Methods Appl. Sci."},{"key":"10.1016\/j.cam.2020.113330_b32","series-title":"The Mathematical Theory of Finite Element Methods","author":"Brenner","year":"2008"},{"key":"10.1016\/j.cam.2020.113330_b33","series-title":"Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity","volume":"vol. 30","author":"Han","year":"2002"},{"key":"10.1016\/j.cam.2020.113330_b34","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.cma.2015.07.013","article-title":"A virtual element method for elastic and inelastic problems on polytope meshes","volume":"295","author":"Beir\u00e3o\u00a0da Veiga","year":"2015","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.cam.2020.113330_b35","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.cma.2016.12.020","article-title":"Some basic formulations of the virtual element method (vem) for finite deformations","volume":"318","author":"Chi","year":"2017","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"10.1016\/j.cam.2020.113330_b36","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1007\/s10915-020-01333-7","article-title":"The nonconforming virtual element method for a stationary stokes hemivariational inequality with slip boundary condition","volume":"85","author":"Ling","year":"2020","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2020.113330_b37","series-title":"Theoretical Numerical Analysis: A Functional Analysis Framework","author":"Atkinson","year":"2009"},{"key":"10.1016\/j.cam.2020.113330_b38","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1137\/140969737","article-title":"Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact","volume":"53","author":"Barboteu","year":"2015","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2020.113330_b39","doi-asserted-by":"crossref","first-page":"263","DOI":"10.2478\/amcs-2013-0020","article-title":"An analytical and numerical approach to a bilateral contact problem with nonmonotone friction","volume":"23","author":"Barboteu","year":"2013","journal-title":"Int. J. Appl. Math. Comput. Sci."},{"key":"10.1016\/j.cam.2020.113330_b40","doi-asserted-by":"crossref","DOI":"10.1142\/S0219199713500168","article-title":"Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction","volume":"16","author":"Barboteu","year":"2014","journal-title":"Commun. Contemp. Math."},{"key":"10.1016\/j.cam.2020.113330_b41","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1007\/s00211-018-0951-9","article-title":"Numerical analysis of stationary variational\u2013hemivariational inequalities","volume":"139","author":"Han","year":"2018","journal-title":"Numer. Math."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037704272030621X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S037704272030621X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,27]],"date-time":"2021-01-27T02:44:35Z","timestamp":1611715475000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S037704272030621X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":41,"alternative-id":["S037704272030621X"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2020.113330","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The virtual element method for general elliptic hemivariational inequalities","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2020.113330","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"113330"}}