{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:28:11Z","timestamp":1726849691443},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation","doi-asserted-by":"crossref","award":["11471328"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"State Key Natural Science Foundation","award":["51739007"]},{"name":"National Center for Mathematics and Interdisciplinary Sciences"},{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2019,3]]},"DOI":"10.1016\/j.cam.2018.08.056","type":"journal-article","created":{"date-parts":[[2018,9,6]],"date-time":"2018-09-06T17:30:45Z","timestamp":1536255045000},"page":"246-260","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["A new family of fourth-order locally one-dimensional schemes for the 3D elastic wave equation"],"prefix":"10.1016","volume":"348","author":[{"given":"Wensheng","family":"Zhang","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2018.08.056_b1","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1785\/BSSA0760041115","article-title":"A fourth-order accurate finite-difference scheme for the computation of elastic waves","volume":"76","author":"Bayliss","year":"1986","journal-title":"Bull. Seismol. Soc. Am."},{"key":"10.1016\/j.cam.2018.08.056_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1137\/S1064827501390960","article-title":"Spatial parallelism of a 3D finite difference velocity-stress elastic wave propagation code","volume":"24","author":"Minkoff","year":"2002","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.cam.2018.08.056_b3","doi-asserted-by":"crossref","first-page":"1902","DOI":"10.1137\/060663520","article-title":"Stable difference approximations for the elastic wave equation in second order formulation","volume":"45","author":"Nilsson","year":"2007","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b4","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1785\/BSSA0890010054","article-title":"3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing","volume":"89","author":"Pitarka","year":"1999","journal-title":"Bull. Seismol. Soc. Am."},{"key":"10.1016\/j.cam.2018.08.056_b5","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1137\/0916052","article-title":"A family of numerical schemes for the computation of elastic waves","volume":"16","author":"Sei","year":"1995","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.cam.2018.08.056_b6","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1111\/j.1365-246X.2007.03421.x","article-title":"Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D","volume":"171","author":"Dumbser","year":"2007","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.cam.2018.08.056_b7","doi-asserted-by":"crossref","first-page":"812","DOI":"10.1016\/j.cam.2013.06.029","article-title":"A hybrid finite difference\/control volume method for the three dimensional poroelastic wave equations in the spherical coordinate system","volume":"255","author":"Zhang","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b8","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1093\/gji\/ggw148","article-title":"A new spectral finite volume method for elastic wave modelling on unstructured meshes","volume":"206","author":"Zhang","year":"2016","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.cam.2018.08.056_b9","doi-asserted-by":"crossref","first-page":"2047","DOI":"10.1137\/S0036142997329554","article-title":"Higher order triangular finite elements with mass lumping for the wave equation","volume":"38","author":"Cohen","year":"2001","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b10","doi-asserted-by":"crossref","first-page":"2109","DOI":"10.1137\/S0036142999359189","article-title":"A new family of mixed finite elements for the linear elastodynamic problem","volume":"39","author":"B\u00e9cache","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4208\/jcm.1310-m3942","article-title":"Stability for imposing absorbing boundary conditions in the finite element simulation of acoustic wave propagation","volume":"32","author":"Zhang","year":"2014","journal-title":"J. Comput. Math."},{"key":"10.1016\/j.cam.2018.08.056_b12","first-page":"233","article-title":"Stability and dispersion analysis of staggered discontinuous Galerkin method for wave propagation","volume":"10","author":"Chan","year":"2013","journal-title":"Int. J. Numer. Model."},{"key":"10.1016\/j.cam.2018.08.056_b13","doi-asserted-by":"crossref","first-page":"2131","DOI":"10.1137\/050641193","article-title":"Optimal discontinuous Galerkin methods for wave propagation","volume":"44","author":"Chung","year":"2006","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b14","doi-asserted-by":"crossref","first-page":"3820","DOI":"10.1137\/080729062","article-title":"Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions","volume":"47","author":"Chung","year":"2009","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b15","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1111\/j.1365-246X.2006.03120.x","article-title":"An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-II: The three-dimensional isotropic case","volume":"167","author":"Dumbser","year":"2006","journal-title":"Geophys. J. Int."},{"issue":"2","key":"10.1016\/j.cam.2018.08.056_b16","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1111\/j.1365-246X.2006.03051.x","article-title":"An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two-dimensional isotropic case with external source terms","volume":"166","author":"K\u00e4ser","year":"2006","journal-title":"Geophys. J. Int."},{"key":"10.1016\/j.cam.2018.08.056_b17","first-page":"42","article-title":"On the numerical integration of uxx2+uyy2=ut by implicit methods","volume":"3","author":"Douglas","year":"1955","journal-title":"J. Soc. Ind. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b18","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1137\/0103003","article-title":"The numerical solution of parabolic and elliptic differential equations","volume":"3","author":"Peaceman","year":"1955","journal-title":"J. Soc. Ind. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b19","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/BF01386295","article-title":"Alternating direction methods for three space variables","volume":"4","author":"Douglas","year":"1962","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2018.08.056_b20","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1137\/0110046","article-title":"Alternating direction methods for hyperbolic differential equations","volume":"10","author":"Lees","year":"1962","journal-title":"J. Soc. Ind. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b21","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1093\/imamat\/1.4.309","article-title":"A high accuracy alternating direction method for the wave equation","volume":"1","author":"Fairweather","year":"1965","journal-title":"IMA J. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b22","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1137\/0704016","article-title":"A new computational procedure for A.D.I. methods","volume":"4","author":"Fairweather","year":"1967","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b23","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1137\/0706006","article-title":"A classification of split difference methods for hyperbolic equations in several space dimensions","volume":"6","author":"Gourlay","year":"1969","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2018.08.056_b24","first-page":"321","article-title":"Fourth-order splitting methods for time-dependent differential equations","volume":"1","author":"Geiser","year":"2008","journal-title":"Numer. Math. Theory Methods Appl."},{"key":"10.1016\/j.cam.2018.08.056_b25","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.cam.2013.09.006","article-title":"An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation","volume":"258","author":"Das","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b26","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.cam.2013.08.024","article-title":"On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation","volume":"270","author":"Liao","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b27","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/0041-5553(64)90002-3","article-title":"Local one dimensional difference schemes for multi-dimensional hyperbolic equations in an arbitrary region","volume":"4","author":"Samarskii","year":"1964","journal-title":"USSR Comput. Math. Math. Phys."},{"key":"10.1016\/j.cam.2018.08.056_b28","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.1016\/j.cam.2011.08.022","article-title":"A new high accuracy locally one-dimensional scheme for the wave equation","volume":"236","author":"Zhang","year":"2011","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b29","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.cam.2016.07.020","article-title":"A new family of fourth-order locally one-dimensional schemes for the three-dimensional wave equation","volume":"311","author":"Zhang","year":"2017","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2018.08.056_b30","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1006\/jcph.1994.1159","article-title":"A perfectly matched layer for the absorption of electromagnetic waves","volume":"114","author":"B\u00e9renger","year":"1994","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2018.08.056_b31","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1090\/S0025-5718-1977-0436612-4","article-title":"Absorbing boundary conditions for the numerical simulation of waves","volume":"31","author":"Engquist","year":"1977","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2018.08.056_b32","doi-asserted-by":"crossref","first-page":"61","DOI":"10.4310\/CMS.2014.v12.n1.a4","article-title":"Exact nonreflecting boundary conditions for three dimensional poroelastic wave equations","volume":"12","author":"Zhang","year":"2014","journal-title":"Commun. Math. Sci."},{"key":"10.1016\/j.cam.2018.08.056_b33","doi-asserted-by":"crossref","first-page":"T219","DOI":"10.1190\/geo2013-0299.1","article-title":"Numerical study of the interface errors of finite-difference simulations of seismic waves","volume":"79","author":"Vishnevsky","year":"2014","journal-title":"Geophysics"},{"key":"10.1016\/j.cam.2018.08.056_b34","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1090\/S0025-5718-1984-0736442-3","article-title":"A note on the numerical solution of the wave equation with piecewise smooth coefficients","volume":"42","author":"Brown","year":"1984","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2018.08.056_b35","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1190\/1.1443029","article-title":"Interface conditions for acoustic and elastic wave propagation","volume":"56","author":"Sochacki","year":"1991","journal-title":"Geophysics"},{"key":"10.1016\/j.cam.2018.08.056_b36","series-title":"Quantitative Seismology, Theory and Methods","author":"Aki","year":"1980"}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042718305430?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042718305430?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,6]],"date-time":"2024-04-06T20:51:31Z","timestamp":1712436691000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042718305430"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3]]},"references-count":36,"alternative-id":["S0377042718305430"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2018.08.056","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2019,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new family of fourth-order locally one-dimensional schemes for the 3D elastic wave equation","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2018.08.056","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V.","name":"copyright","label":"Copyright"}]}}