{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:16:05Z","timestamp":1732036565280},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,3,1]],"date-time":"2018-03-01T00:00:00Z","timestamp":1519862400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2018,3]]},"DOI":"10.1016\/j.cam.2017.02.031","type":"journal-article","created":{"date-parts":[[2017,3,6]],"date-time":"2017-03-06T20:48:42Z","timestamp":1488833322000},"page":"877-895","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":46,"special_numbering":"C","title":["A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance"],"prefix":"10.1016","volume":"330","author":[{"given":"P.J.","family":"Garc\u00eda Nieto","sequence":"first","affiliation":[]},{"given":"E.","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9840-2256","authenticated-orcid":false,"given":"J.C.","family":"\u00c1lvarez Ant\u00f3n","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0937-1882","authenticated-orcid":false,"given":"V.M.","family":"Gonz\u00e1lez Su\u00e1rez","sequence":"additional","affiliation":[]},{"given":"R.","family":"Mayo Bay\u00f3n","sequence":"additional","affiliation":[]},{"given":"F.","family":"Mateos Mart\u00edn","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2017.02.031_br000005","series-title":"Steel Castings Handbook","author":"Blair","year":"1995"},{"key":"10.1016\/j.cam.2017.02.031_br000010","unstructured":"A.M. D\u00edaz, L.F. Sancho, J.A. Sirgo, A.M. L\u00f3pez, Application of techniques of dimension reduction to predict the steel quality at the end of the secondary steelmaking, in: IEEE Industry Applications Conference, 40th IAS Annual General Meeting, Hong Kong, October 2\u20136th 2005, pp. 537\u2013542."},{"key":"10.1016\/j.cam.2017.02.031_br000015","series-title":"Steels: Processing, Structure, and Performance","author":"Krauss","year":"2005"},{"key":"10.1016\/j.cam.2017.02.031_br000020","doi-asserted-by":"crossref","unstructured":"J.A. Sirgo, R. Campo, A. L\u00f3pez, A.M. D\u00edaz, L.F. Sancho, Measurement of centerline segregation in steel slabs, in: IEEE Industry Applications Conference, 41st IAS Annual Meeting, Conference Record of the 2006 IEEE, October 8\u201312th 2006, pp. 516\u2013520.","DOI":"10.1109\/IAS.2006.256568"},{"key":"10.1016\/j.cam.2017.02.031_br000025","doi-asserted-by":"crossref","unstructured":"A.M. D\u00edaz, L.F. Sancho, E. D\u00edaz, A.M. L\u00f3pez, J.A. Sirgo, Application of self organizing maps to predict centerline segregation in steel slabs, in: IEEE Industry Applications Conference, 41st IAS Annual Meeting, Conference Record of the 2006 IEEE, pp. 511\u2013515.","DOI":"10.1109\/IAS.2006.256567"},{"key":"10.1016\/j.cam.2017.02.031_br000030","series-title":"Solidification","author":"Dantzig","year":"2009"},{"issue":"4","key":"10.1016\/j.cam.2017.02.031_br000035","first-page":"119","article-title":"Control of centerline segregation in slab casting","volume":"11","author":"R\u00e9ger","year":"2014","journal-title":"Acta Polytech. Hungar."},{"issue":"1","key":"10.1016\/j.cam.2017.02.031_br000040","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/S1006-706X(09)60003-0","article-title":"Theoretical model of steel continuous casting technology","volume":"16","author":"Gheorghies","year":"2009","journal-title":"J. Iron Steel Res. Int."},{"key":"10.1016\/j.cam.2017.02.031_br000045","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1002\/cem.1180060405","article-title":"MARS: A tutorial","volume":"6","author":"Sekulic","year":"1992","journal-title":"J. Chemometr."},{"key":"10.1016\/j.cam.2017.02.031_br000050","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1177\/096228029500400303","article-title":"An introduction to multivariate adaptive regression splines","volume":"4","author":"Friedman","year":"1995","journal-title":"Stat. Methods Med. Res."},{"key":"10.1016\/j.cam.2017.02.031_br000055","unstructured":"J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the Fourth IEEE International Conference on Neural Networks, IEEE Service Center, Perth, Australia, 1995, Vol. 4, pp. 1942\u20131948."},{"key":"10.1016\/j.cam.2017.02.031_br000060","series-title":"Swarm Intelligence","author":"Eberhart","year":"2001"},{"key":"10.1016\/j.cam.2017.02.031_br000065","series-title":"Particle Swarm Optimization","author":"Clerc","year":"2006"},{"key":"10.1016\/j.cam.2017.02.031_br000070","series-title":"Ant Colony Optimization","author":"Dorigo","year":"2004"},{"issue":"3","key":"10.1016\/j.cam.2017.02.031_br000075","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","article-title":"A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm","volume":"39","author":"Karaboga","year":"2007","journal-title":"J. Global Optim."},{"key":"10.1016\/j.cam.2017.02.031_br000080","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"},{"key":"10.1016\/j.cam.2017.02.031_br000085","series-title":"The Elements of Statistical Learning","author":"Hastie","year":"2003"},{"key":"10.1016\/j.cam.2017.02.031_br000090","series-title":"An Introduction to Support Vector Machines and Other Kernel-based Learning Methods","author":"Cristianini","year":"2000"},{"key":"10.1016\/j.cam.2017.02.031_br000095","series-title":"Support Vector Machines","author":"Steinwart","year":"2008"},{"key":"10.1016\/j.cam.2017.02.031_br000100","first-page":"1","article-title":"Multivariate adaptive regression splines","volume":"19","author":"Friedman","year":"1991","journal-title":"Ann. Statist."},{"key":"10.1016\/j.cam.2017.02.031_br000105","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.asoc.2014.06.035","article-title":"A quick artificial bee colony (qABC) algorithm and its performance on optimization problems","volume":"23","author":"Karaboga","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.cam.2017.02.031_br000110","series-title":"Adaptation and Hybridization in Computational Intelligence, Vol. 18","first-page":"3","article-title":"Adaptation and hybridization in nature-inspired algorithms","author":"Fister","year":"2015"},{"key":"10.1016\/j.cam.2017.02.031_br000115","series-title":"Swarm Intelligence and Bio-Inspired Computation: Theory and Applications","author":"Yang","year":"2013"},{"key":"10.1016\/j.cam.2017.02.031_br000120","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.agrformet.2014.09.025","article-title":"Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment","volume":"200","author":"Shrestla","year":"2015","journal-title":"Agricult. Forest Meteorol."},{"key":"10.1016\/j.cam.2017.02.031_br000125","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.enconman.2013.06.034","article-title":"Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration","volume":"75","author":"Chen","year":"2013","journal-title":"Energ. Convers. Manage."},{"key":"10.1016\/j.cam.2017.02.031_br000130","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.renene.2012.10.009","article-title":"Short-term solar power prediction using a support vector machine","volume":"52","author":"Zeng","year":"2013","journal-title":"Renew. Energy"},{"issue":"35","key":"10.1016\/j.cam.2017.02.031_br000135","doi-asserted-by":"crossref","first-page":"4481","DOI":"10.1016\/j.atmosenv.2010.07.024","article-title":"Prediction of hourly O3 concentrations using support vector regression algorithms","volume":"44","author":"Ortiz-Garc\u00eda","year":"2010","journal-title":"Atmos. Environ."},{"issue":"10","key":"10.1016\/j.cam.2017.02.031_br000140","doi-asserted-by":"crossref","first-page":"1763","DOI":"10.1007\/s11269-006-9126-z","article-title":"Estimation of discharge and end depth in trapezoidal channel by support vector machines","volume":"21","author":"Pal","year":"2007","journal-title":"Water Resour. Manag."},{"issue":"7","key":"10.1016\/j.cam.2017.02.031_br000145","doi-asserted-by":"crossref","first-page":"2577","DOI":"10.1007\/s11269-013-0304-5","article-title":"Water quality zoning using probabilistic support vector machines and self-organizing maps","volume":"27","author":"Nikoo","year":"2013","journal-title":"Water Resour. Manag."},{"key":"10.1016\/j.cam.2017.02.031_br000150","unstructured":"UNE-AEN CTN 36432, Macrographic examination by sulfur print (Bauman method) of steel products and foundry products, Spanish Institute of the Streamlining and Standardization, IRANOR, Madrid (AEN\/CTN 36; ICN 77.080.01), 1981."},{"key":"10.1016\/j.cam.2017.02.031_br000155","unstructured":"ESCS \u2014 Research Project 7210-CA\/186, Strand reduction in continuous casting and its effect on product quality, 1999."},{"key":"10.1016\/j.cam.2017.02.031_br000160","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1002\/srin.199805541","article-title":"Quantification of macrosegregation in continuously cast structures","volume":"69","author":"Komenda","year":"1998","journal-title":"Steel Res."},{"issue":"11\u201312","key":"10.1016\/j.cam.2017.02.031_br000165","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1002\/srin.200300249","article-title":"Investigation of centerline segregation and centerline porosity in CC-slabs","volume":"74","author":"Jacobi","year":"2003","journal-title":"Steel Res."},{"key":"10.1016\/j.cam.2017.02.031_br000170","first-page":"41","article-title":"Macrosegregation: Part II","volume":"242","author":"Flemings","year":"1968","journal-title":"Trans. AIME"},{"issue":"10","key":"10.1016\/j.cam.2017.02.031_br000175","doi-asserted-by":"crossref","first-page":"2121","DOI":"10.1007\/BF02643923","article-title":"Solidification processing","volume":"5","author":"Flemings","year":"1974","journal-title":"Metall. Trans. B"},{"key":"10.1016\/j.cam.2017.02.031_br000180","doi-asserted-by":"crossref","first-page":"665","DOI":"10.2355\/isijinternational.35.665","article-title":"Simulation of micro-\/microsegregation during solidification of a low-alloy steel","volume":"35","author":"Schneider","year":"1995","journal-title":"Iron Steel Inst. Jap. Int."},{"key":"10.1016\/j.cam.2017.02.031_br000185","doi-asserted-by":"crossref","first-page":"1357","DOI":"10.1007\/s11661-999-0284-5","article-title":"Simulation of convection and macrosegregation in a large steel ingot","volume":"30","author":"Gu","year":"1999","journal-title":"Metall. Mater. Trans. A"},{"key":"10.1016\/j.cam.2017.02.031_br000190","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/BF02728476","article-title":"Segregation in cast products","volume":"26","author":"Ghosh","year":"2001","journal-title":"Sadhana"},{"issue":"2","key":"10.1016\/j.cam.2017.02.031_br000195","first-page":"45","article-title":"Centerline segregation of continuously cast slabs: Influence on microstructure and fracture morphology","volume":"15","author":"Fujda","year":"2005","journal-title":"J. Met. Mater. Min."},{"issue":"3","key":"10.1016\/j.cam.2017.02.031_br000200","first-page":"212","article-title":"Distribution and segregation of dissolved elements in pipeline slab","volume":"14","author":"Liu","year":"2007","journal-title":"J. Univ. Sci. Technol. B. Min. Metall. Mater."},{"key":"10.1016\/j.cam.2017.02.031_br000205","series-title":"Neural Networks. A Comprehensive Foundation","author":"Haykin","year":"1999"},{"issue":"4","key":"10.1016\/j.cam.2017.02.031_br000210","doi-asserted-by":"crossref","first-page":"7604","DOI":"10.1016\/j.eswa.2008.09.048","article-title":"The forecasting model based on wavelet support vector machine","volume":"36","author":"Wu","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cam.2017.02.031_br000215","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1016\/j.mcm.2010.03.017","article-title":"Analysis of lead times of metallic components in the aerospace industry through a supported vector machine model","volume":"52","author":"de Cos Juez","year":"2010","journal-title":"Math. Comput. Modelling"},{"key":"10.1016\/j.cam.2017.02.031_br000220","series-title":"Kernel Methods for Pattern Analysis","author":"Shawe-Taylor","year":"2004"},{"key":"10.1016\/j.cam.2017.02.031_br000225","doi-asserted-by":"crossref","first-page":"1878","DOI":"10.1080\/00207160902783557","article-title":"A new data mining methodology applied to the modelling of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women","volume":"86","author":"de Cos Jues","year":"2009","journal-title":"Int. J. Comput. Math."},{"issue":"8","key":"10.1016\/j.cam.2017.02.031_br000230","doi-asserted-by":"crossref","first-page":"3798","DOI":"10.1109\/TPEL.2012.2230026","article-title":"Battery state-of-charge estimator using the MARS technique","volume":"28","author":"\u00c1lvarez Ant\u00f3n","year":"2013","journal-title":"IEEE Trans. Power Electron."},{"key":"10.1016\/j.cam.2017.02.031_br000235","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.asoc.2014.05.015","article-title":"Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines","volume":"22","author":"Chen","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.cam.2017.02.031_br000240","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.jhydrol.2015.06.052","article-title":"Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree","volume":"528","author":"Kisi","year":"2015","journal-title":"J. Hydrol."},{"key":"10.1016\/j.cam.2017.02.031_br000245","series-title":"Standard Particle Swarm Optimisation: From 2006 to 2011, Technical Report","author":"Clerc","year":"2012"},{"key":"10.1016\/j.cam.2017.02.031_br000250","series-title":"Statistics","author":"Freedman","year":"2007"},{"issue":"387","key":"10.1016\/j.cam.2017.02.031_br000255","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1080\/01621459.1984.10478083","article-title":"Cross-validation of regression models","volume":"79","author":"Picard","year":"1984","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.cam.2017.02.031_br000260","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Int. Syst. Technol."},{"key":"10.1016\/j.cam.2017.02.031_br000265","series-title":"Earth: Multivariate Adaptive Regression Spline Models, R Package, Version 3.2-7","author":"Milborrow","year":"2014"},{"key":"10.1016\/j.cam.2017.02.031_br000270","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.envsoft.2013.01.004","article-title":"A model-independent Particle Swarm Optimisation software for model calibration","volume":"43","author":"Zambrano-Bigiarini","year":"2013","journal-title":"Environ. Modell. Softw."},{"key":"10.1016\/j.cam.2017.02.031_br000275","series-title":"HydroPSO: A Flexible and Model-independent Particle Swarm Optimisation (PSO) Package for Calibration\/Optimisation of Environmental Models, R Package, Version 0.3-4","author":"Zambrano-Bigiarini","year":"2014"}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042717300961?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042717300961?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T21:27:01Z","timestamp":1646083621000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042717300961"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3]]},"references-count":55,"alternative-id":["S0377042717300961"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2017.02.031","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2018,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2017.02.031","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V.","name":"copyright","label":"Copyright"}]}}