{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T06:28:39Z","timestamp":1719988119462},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T00:00:00Z","timestamp":1615766400000},"content-version":"vor","delay-in-days":1475,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.cam.2016.10.011","type":"journal-article","created":{"date-parts":[[2016,10,25]],"date-time":"2016-10-25T13:17:29Z","timestamp":1477401449000},"page":"486-498","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["G-symplectic second derivative general linear methods for Hamiltonian problems"],"prefix":"10.1016","volume":"313","author":[{"given":"M.","family":"Hosseini Nasab","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8406-763X","authenticated-orcid":false,"given":"G.","family":"Hojjati","sequence":"additional","affiliation":[]},{"given":"A.","family":"Abdi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2016.10.011_br000005","series-title":"Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Vol. 31","author":"Hairer","year":"2006"},{"key":"10.1016\/j.cam.2016.10.011_br000010","series-title":"Methods of integration which preserve the contact transformation property of the Hamiltonian equations, Department of Mathematics, University of Notre Dame, Report 4","author":"de Vogelaere","year":"1956"},{"key":"10.1016\/j.cam.2016.10.011_br000015","doi-asserted-by":"crossref","first-page":"2669","DOI":"10.1109\/TNS.1983.4332919","article-title":"A canonical integration technique","volume":"30","author":"Ruth","year":"1983","journal-title":"IEEE Trans. Nucl. Sci."},{"key":"10.1016\/j.cam.2016.10.011_br000020","series-title":"Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations: Computation of Partial Differential Equations","author":"Feng","year":"1985"},{"key":"10.1016\/j.cam.2016.10.011_br000025","doi-asserted-by":"crossref","first-page":"877","DOI":"10.1007\/BF01954907","article-title":"Runge\u2013Kutta schemes for Hamiltonian systems","volume":"28","author":"Sanz-Serna","year":"1988","journal-title":"BIT"},{"key":"10.1016\/j.cam.2016.10.011_br000030","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1007\/BF00945133","article-title":"Canonical Runge\u2013Kutta methods","volume":"39","author":"Lasagni","year":"1988","journal-title":"Z. Angew. Math. Phys. (ZAMP)"},{"key":"10.1016\/j.cam.2016.10.011_br000035","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1017\/S0962492900002282","article-title":"Symplectic integrators for Hamiltonian problems: an overview","volume":"1","author":"Sanz-Serna","year":"1992","journal-title":"Acta Numer."},{"key":"10.1016\/j.cam.2016.10.011_br000040","series-title":"Numerical Hamiltonian Problems","author":"Sanz-Serna","year":"1994"},{"key":"10.1016\/j.cam.2016.10.011_br000045","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/s11075-008-9250-3","article-title":"The existence of symplectic general linear methods","volume":"51","author":"Butcher","year":"2009","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000050","series-title":"Numerical Methods for Ordinary Differential Equations","author":"Butcher","year":"2008"},{"key":"10.1016\/j.cam.2016.10.011_br000055","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s11075-015-9964-y","article-title":"The cohesiveness of G-symplectic methods","volume":"70","author":"Butcher","year":"2015","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000060","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1007\/s10543-013-0437-1","article-title":"G-symplecticity implies conjugate-symplecticity of the underlying one-step method","volume":"53","author":"D\u2019Ambrosio","year":"2013","journal-title":"BIT"},{"key":"10.1016\/j.cam.2016.10.011_br000065","series-title":"Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws","first-page":"105","article-title":"Dealing with parasitic behaviour in G-symplectic integrators","author":"Butcher","year":"2013"},{"key":"10.1016\/j.cam.2016.10.011_br000070","doi-asserted-by":"crossref","first-page":"2440","DOI":"10.1137\/140953277","article-title":"The control of parasitism in G-symplectic methods","volume":"52","author":"Butcher","year":"2014","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2016.10.011_br000075","series-title":"Long-term behaviour of G-symplectic methods","author":"Habib","year":"2010"},{"key":"10.1016\/j.cam.2016.10.011_br000080","article-title":"On the G-symplecticity of two-step Runge\u2013Kutta methods","volume":"3","author":"D\u2019Ambrosio","year":"2012","journal-title":"Commun. Appl. Ind. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000085","article-title":"Construction of nearly conservative multivalue numerical methods for Hamiltonian problems","volume":"3","author":"D\u2019Ambrosio","year":"2013","journal-title":"Commun. Appl. Ind. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000090","first-page":"553","article-title":"Numerical integration of Hamiltonian problems by G-symplectic methods","volume":"40","author":"D\u2019Ambrosio","year":"2014","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000095","series-title":"Accurate and efficient methods for differential systems with special structures","author":"Imran","year":"2014"},{"key":"10.1016\/j.cam.2016.10.011_br000100","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1137\/0711029","article-title":"Second derivative multistep methods for stiff ordinary differential equations","volume":"11","author":"Enright","year":"1974","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2016.10.011_br000105","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.apm.2005.06.007","article-title":"New second derivative multistep methods for stiff systems","volume":"30","author":"Hojjati","year":"2006","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.cam.2016.10.011_br000110","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s11075-009-9349-1","article-title":"On explicit two-derivative Runge\u2013Kutta methods","volume":"53","author":"Chan","year":"2010","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000115","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1007\/s11075-014-9823-2","article-title":"Two-derivative Runge\u2013Kutta methods for PDEs using a novel discretization approach","volume":"65","author":"Tsai","year":"2014","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000120","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1007\/s11075-005-0413-1","article-title":"Second derivative methods with RK stability","volume":"40","author":"Butcher","year":"2005","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000125","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s11075-010-9420-y","article-title":"An extension of general linear methods","volume":"57","author":"Abdi","year":"2011","journal-title":"Numer. Algorithms"},{"key":"10.1016\/j.cam.2016.10.011_br000130","doi-asserted-by":"crossref","first-page":"1046","DOI":"10.1016\/j.apnum.2011.06.004","article-title":"Maximal order for second derivative general linear methods with Runge\u2013Kutta stability","volume":"61","author":"Abdi","year":"2011","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000135","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.apnum.2013.08.006","article-title":"On the construction of second derivative diagonally implicit multistage integration methods for odes","volume":"76","author":"Abdi","year":"2014","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000140","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.apnum.2015.04.002","article-title":"Implementation of Nordsieck second derivative methods for stiff odes","volume":"94","author":"Abdi","year":"2015","journal-title":"Appl. Numer. Math."},{"key":"10.1016\/j.cam.2016.10.011_br000145","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1007\/s10543-014-0541-x","article-title":"Order conditions for G-symplectic methods","volume":"55","author":"Butcher","year":"2015","journal-title":"BIT"},{"key":"10.1016\/j.cam.2016.10.011_br000150","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1090\/S0025-5718-1992-1136225-3","article-title":"Explicit canonical methods for Hamiltonian systems","volume":"59","author":"Okunbor","year":"1992","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2016.10.011_br000155","series-title":"Solving Ordinary Differential Equations I. Nonstiff Problems","author":"Hairer","year":"2000"},{"key":"10.1016\/j.cam.2016.10.011_br000160","series-title":"Mathematical Methods of Classical Mechanics, Vol. 60","author":"Arnold","year":"1998"},{"key":"10.1016\/j.cam.2016.10.011_br000165","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1007\/s10543-004-5240-6","article-title":"Energy conservation with non-symplectic methods: examples and counter-examples","volume":"44","author":"Faou","year":"2004","journal-title":"BIT"}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042716305003?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042716305003?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,15]],"date-time":"2021-03-15T08:41:30Z","timestamp":1615797690000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042716305003"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":33,"alternative-id":["S0377042716305003"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2016.10.011","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"G-symplectic second derivative general linear methods for Hamiltonian problems","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2016.10.011","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}