{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,30]],"date-time":"2025-03-30T04:20:17Z","timestamp":1743308417210},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,8,1]],"date-time":"2014-08-01T00:00:00Z","timestamp":1406851200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,8,13]],"date-time":"2018-08-13T00:00:00Z","timestamp":1534118400000},"content-version":"vor","delay-in-days":1473,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"Guangdong Provincial Government of China"},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"crossref","award":["10771224","11071264"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/100000181","name":"US Air Force Office of Scientific Research","doi-asserted-by":"crossref","award":["FA9550-09-1-0511"],"id":[{"id":"10.13039\/100000181","id-type":"DOI","asserted-by":"crossref"}]},{"name":"US National Science Foundation","award":["DMS-0712827","DMS-1115523"]},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"crossref","award":["11071286","91130009"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"crossref","award":["11201497"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2014,8]]},"DOI":"10.1016\/j.cam.2013.03.050","type":"journal-article","created":{"date-parts":[[2013,4,10]],"date-time":"2013-04-10T11:19:51Z","timestamp":1365592791000},"page":"96-109","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Higher-order finite volume methods II: Inf\u2013sup condition and uniform local ellipticity"],"prefix":"10.1016","volume":"265","author":[{"given":"Zhongying","family":"Chen","sequence":"first","affiliation":[]},{"given":"Yuesheng","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Yuanyuan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2013.03.050_br000005","unstructured":"Z. Chen, Y. Xu, Y. Zhang, A general construction of higher-order finite volume methods (submitted for publication)."},{"key":"10.1016\/j.cam.2013.03.050_br000010","series-title":"Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods","author":"Li","year":"2000"},{"key":"10.1016\/j.cam.2013.03.050_br000015","series-title":"Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics","author":"Petrila","year":"2005"},{"key":"10.1016\/j.cam.2013.03.050_br000020","series-title":"An Introduction to Computational Fluid Dynamics: The Finite Volume Method","author":"Versteeg","year":"2007"},{"key":"10.1016\/j.cam.2013.03.050_br000025","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1007\/s10444-011-9201-8","article-title":"Higher-order finite volume methods for elliptic boundary value problem","volume":"37","author":"Chen","year":"2012","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.cam.2013.03.050_br000030","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1137\/0728022","article-title":"The finite volume element method for diffusion equations on general triangulations","volume":"28","author":"Cai","year":"1991","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000035","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1137\/0727039","article-title":"On the accuracy of the finite volume element method for diffusion equations on composite grids","volume":"27","author":"Cai","year":"1990","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000040","doi-asserted-by":"crossref","first-page":"1932","DOI":"10.1137\/S0036142903427639","article-title":"Error estimates for a finite volume element method for elliptic PDE\u2019s in nonconvex polygonal domains","volume":"42","author":"Chatzipantelidis","year":"2005","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000045","first-page":"127","article-title":"The error estimate of generalized difference methods of 3rd-order Hermite type for elliptic partial differential equations","volume":"8","author":"Chen","year":"1992","journal-title":"Northeast. Math. J."},{"key":"10.1016\/j.cam.2013.03.050_br000050","doi-asserted-by":"crossref","first-page":"1865","DOI":"10.1137\/S0036142900368873","article-title":"On the accuracy of the finite volume element method based on piecewise linear polynomials","volume":"39","author":"Ewing","year":"2002","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000055","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1007\/BF02241218","article-title":"On first and second order box schemes","volume":"41","author":"Hackbusch","year":"1989","journal-title":"Computing"},{"key":"10.1016\/j.cam.2013.03.050_br000060","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/BF02252250","article-title":"The finite volume element method with quadratic basis functions","volume":"57","author":"Liebau","year":"1996","journal-title":"Computing"},{"key":"10.1016\/j.cam.2013.03.050_br000065","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1137\/0724007","article-title":"Generalized difference methods for a nonlinear Dirichlet problem","volume":"24","author":"Li","year":"1987","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000070","first-page":"140","article-title":"Generalized difference methods for second order elliptic partial differential equations (I)\u2014triangle grids","volume":"2","author":"Li","year":"1982","journal-title":"Numer. Math. J. Chinese Univ."},{"key":"10.1016\/j.cam.2013.03.050_br000075","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1137\/0724050","article-title":"Some error estimates for the box method","volume":"24","author":"Bank","year":"1987","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000080","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1007\/s00211-008-0189-z","article-title":"Analysis of linear and quadratic simplicial finite volume methods for elliptic equations","volume":"111","author":"Xu","year":"2009","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2013.03.050_br000085","doi-asserted-by":"crossref","first-page":"4021","DOI":"10.1137\/080720164","article-title":"A new class of high order finite volume methods for second order elliptic equations","volume":"47","author":"Chen","year":"2010","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"10.1016\/j.cam.2013.03.050_br000090","first-page":"22","article-title":"L2-estimates for linear element generalized difference methods","volume":"33","author":"Chen","year":"1994","journal-title":"Acta Sci. Natur. Univ. Sunyatseni"},{"key":"10.1016\/j.cam.2013.03.050_br000095","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1023\/A:1014577215948","article-title":"A note on the optimal L2-estimate of the finite volume element method","volume":"16","author":"Chen","year":"2002","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.cam.2013.03.050_br000100","doi-asserted-by":"crossref","first-page":"1762","DOI":"10.1137\/S0036142994264699","article-title":"On the finite volume element method for general self-adjoint elliptic problems","volume":"35","author":"Huang","year":"1998","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.03.050_br000105","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s10444-009-9121-z","article-title":"L2 error estimate of the finite volume element methods on quadrilateral meshes","volume":"33","author":"Lv","year":"2010","journal-title":"Adv. Comput. Math."},{"key":"10.1016\/j.cam.2013.03.050_br000110","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1090\/S0025-5718-99-01192-8","article-title":"Error estimates in L2,H1 and L\u221e in covolume methods for elliptic and parabolic problems: a unified approach","volume":"69","author":"Chou","year":"2000","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2013.03.050_br000115","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1002\/num.10068","article-title":"Error estimates for finite volume element methods for general second-order elliptic problems","volume":"19","author":"Wu","year":"2003","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.cam.2013.03.050_br000120","first-page":"163","article-title":"Superconvergence of generalized difference methods for elliptic boundary value problem","volume":"3","author":"Chen","year":"1994","journal-title":"Numer. Math. J. Chinese Univ. (English Ser.)"},{"key":"10.1016\/j.cam.2013.03.050_br000125","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1002\/num.10059","article-title":"Lp error estimates and superconvergence for covolume or finite volume element methods","volume":"19","author":"Chou","year":"2003","journal-title":"Numer. Methods Partial Differential Equations"},{"key":"10.1016\/j.cam.2013.03.050_br000130","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1007\/s002110100288","article-title":"Multigrid algorithms for a vertex-centered covolume method for elliptic problems","volume":"90","author":"Chou","year":"2002","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2013.03.050_br000135","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1090\/S0025-5718-2012-02582-8","article-title":"Multilevel preconditioning for the finite volume method","volume":"81","author":"Li","year":"2012","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2013.03.050_br000140","series-title":"The Mathematical Theory of Finite Element Methods","author":"Brenner","year":"1994"},{"key":"10.1016\/j.cam.2013.03.050_br000145","series-title":"The Finite Element Method for Elliptic Problems","author":"Ciarlet","year":"1978"},{"key":"10.1016\/j.cam.2013.03.050_br000150","unstructured":"I. Babu\u0161ka, I. Aziz, Survey lectures on the mathematical foundations of the finite element method, Univ. Maryland, College Park, Washington DC, Technical Note, BN-748, 1972."},{"key":"10.1016\/j.cam.2013.03.050_br000155","doi-asserted-by":"crossref","first-page":"406","DOI":"10.1137\/S0036142996297217","article-title":"The Petrov\u2013Galerkin and iterated Petrov\u2013Galerkin methods for second-kind integral equations","volume":"35","author":"Chen","year":"1998","journal-title":"SIAM J. Numer. Anal."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042713001854?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042713001854?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,16]],"date-time":"2018-10-16T21:25:47Z","timestamp":1539725147000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042713001854"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,8]]},"references-count":31,"alternative-id":["S0377042713001854"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2013.03.050","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2014,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Higher-order finite volume methods II: Inf\u2013sup condition and uniform local ellipticity","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2013.03.050","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}