{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T05:17:46Z","timestamp":1726463866616},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2013,11,1]],"date-time":"2013-11-01T00:00:00Z","timestamp":1383264000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"Programa de Apoyo a la Investigaci\u00f3n y Desarrollo","award":["PAID-06-10","PAID-05-12"]},{"name":"Spanish Ministry of Education and Science"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2013,11]]},"DOI":"10.1016\/j.cam.2013.01.014","type":"journal-article","created":{"date-parts":[[2013,2,1]],"date-time":"2013-02-01T23:20:21Z","timestamp":1359760821000},"page":"62-74","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes"],"prefix":"10.1016","volume":"252","author":[{"given":"M.T.","family":"Capilla","sequence":"first","affiliation":[]},{"given":"A.","family":"Balaguer-Beser","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2013.01.014_br000005","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1016\/j.advwatres.2011.05.008","article-title":"High-order finite volume WENO schemes for the shallow water equations with dry states","volume":"34","author":"Xing","year":"2011","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.cam.2013.01.014_br000010","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1016\/0045-7930(94)90004-3","article-title":"Upwind methods for hyperbolic conservation laws with source terms","volume":"23","author":"Berm\u00fadez","year":"1994","journal-title":"Comput. & Fluids"},{"key":"10.1016\/j.cam.2013.01.014_br000015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1137\/0733001","article-title":"A well-balanced scheme for the numerical processing of source terms in hyperbolic equations","volume":"33","author":"Greenberg","year":"1996","journal-title":"SIAM J. Numer. Anal."},{"issue":"1","key":"10.1016\/j.cam.2013.01.014_br000020","first-page":"100","article-title":"A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms","volume":"1","author":"Xing","year":"2006","journal-title":"Commun. Comput. Phys."},{"issue":"5","key":"10.1016\/j.cam.2013.01.014_br000025","doi-asserted-by":"crossref","first-page":"2587","DOI":"10.1137\/070686147","article-title":"A positive preserving high-order VFROE scheme for shallow water equations: a class of relaxation schemes","volume":"30","author":"Berthon","year":"2008","journal-title":"SIAM J. Sci. Comput."},{"issue":"7","key":"10.1016\/j.cam.2013.01.014_br000030","first-page":"684","article-title":"Well-balanced bottom discontinuities treatment for high-order shallow water equations WENO scheme","volume":"135","author":"Caleffi","year":"2009","journal-title":"J. Engng. Mech."},{"key":"10.1016\/j.cam.2013.01.014_br000035","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.advengsoft.2012.04.003","article-title":"A well-balanced high-resolution shape-preserving central scheme to solve one-dimensional sediment transport equations","volume":"50","author":"Capilla","year":"2012","journal-title":"Adv. Eng. Softw."},{"key":"10.1016\/j.cam.2013.01.014_br000040","doi-asserted-by":"crossref","first-page":"1103","DOI":"10.1090\/S0025-5718-06-01851-5","article-title":"High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems","volume":"75","author":"Castro","year":"2006","journal-title":"Math. Comp."},{"key":"10.1016\/j.cam.2013.01.014_br000045","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1007\/s10915-008-9250-4","article-title":"High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems","volume":"39","author":"Castro","year":"2008","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2013.01.014_br000050","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1006\/jcph.1996.0130","article-title":"Efficient implementation of weighted ENO schemes","volume":"126","author":"Jiang","year":"1996","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2013.01.014_br000055","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.jcp.2005.10.005","article-title":"High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms","volume":"214","author":"Xing","year":"2006","journal-title":"J. Comput. Phys."},{"issue":"6","key":"10.1016\/j.cam.2013.01.014_br000060","doi-asserted-by":"crossref","first-page":"807","DOI":"10.4208\/jcm.1001-m3122","article-title":"A numerical study for the performance of the WENO schemes based on different numerical fluxes for the shallow water equations","volume":"28","author":"Lu","year":"2010","journal-title":"J. Comput. Math."},{"year":"2001","series-title":"Shock-capturing methods for free-surface shallow flows","author":"Toro","key":"10.1016\/j.cam.2013.01.014_br000065"},{"key":"10.1016\/j.cam.2013.01.014_br000070","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1016\/0021-9991(90)90260-8","article-title":"Non-oscillatory central differencing for hyperbolic conservation laws","volume":"87","author":"Nessyahu","year":"1990","journal-title":"J. Comput. Phys."},{"issue":"1","key":"10.1016\/j.cam.2013.01.014_br000075","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1137\/S1064827597324998","article-title":"High-order central schemes for hyperbolic systems of conservation laws","volume":"21","author":"Bianco","year":"1999","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.cam.2013.01.014_br000080","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1137\/S1064827501385852","article-title":"A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws","volume":"24","author":"Levy","year":"2002","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.cam.2013.01.014_br000085","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1137\/S1064827503420696","article-title":"Central Runge\u2013Kutta schemes for conservation laws","volume":"26","author":"Pareschi","year":"2005","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.cam.2013.01.014_br000090","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1002\/nme.3105","article-title":"A new reconstruction procedure in central schemes for hyperbolic conservation laws","volume":"86","author":"Balaguer-Beser","year":"2011","journal-title":"Int. J. Numer. Methods Eng."},{"issue":"2","key":"10.1016\/j.cam.2013.01.014_br000095","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/S0036142903437106","article-title":"Fourth-order non-oscillatory upwind and central schemes for hyperbolic conservation laws","volume":"43","author":"Balaguer","year":"2005","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cam.2013.01.014_br000100","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.jcp.2006.02.001","article-title":"Fourth-order balanced source term treatment in central WENO schemes for shallow water equations","volume":"218","author":"Caleffi","year":"2006","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2013.01.014_br000105","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s002110050345","article-title":"Third order nonoscillatory central scheme for hyperbolic conservation laws","volume":"79","author":"Liu","year":"1998","journal-title":"Numer. Math."},{"key":"10.1016\/j.cam.2013.01.014_br000110","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.jcp.2005.02.006","article-title":"High order finite difference WENO schemes with the exact conservation property for the shallow water equations","volume":"208","author":"Xing","year":"2005","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2013.01.014_br000115","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.jcp.2006.06.024","article-title":"Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes","volume":"222","author":"Ricchiuto","year":"2007","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.cam.2013.01.014_br000120","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s10915-010-9440-8","article-title":"A hybrid second order scheme for shallow water flows","volume":"48","author":"Mart\u00ednez-Gavara","year":"2011","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.cam.2013.01.014_br000125","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1006\/jcph.1998.6058","article-title":"Balancing source terms and flux gradients in high-resolution Godunov method: the quasi-steady wave propagation algorithm","volume":"146","author":"LeVeque","year":"1998","journal-title":"J. Comput. Phys."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042713000538?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042713000538?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,30]],"date-time":"2022-06-30T10:27:13Z","timestamp":1656584833000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042713000538"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,11]]},"references-count":25,"alternative-id":["S0377042713000538"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2013.01.014","relation":{},"ISSN":["0377-0427"],"issn-type":[{"type":"print","value":"0377-0427"}],"subject":[],"published":{"date-parts":[[2013,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2013.01.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}