{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T19:10:57Z","timestamp":1724526657238},"reference-count":19,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2013,11,1]],"date-time":"2013-11-01T00:00:00Z","timestamp":1383264000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"vor","delay-in-days":1461,"URL":"https:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100011011","name":"Junta de Andaluc\u00eda","doi-asserted-by":"crossref","award":["FQM359"],"id":[{"id":"10.13039\/501100011011","id-type":"DOI","asserted-by":"crossref"}]},{"name":"ETSIE of the University of Granada (Spain)"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Computational and Applied Mathematics"],"published-print":{"date-parts":[[2013,11]]},"DOI":"10.1016\/j.cam.2012.09.020","type":"journal-article","created":{"date-parts":[[2012,9,18]],"date-time":"2012-09-18T18:32:00Z","timestamp":1347993120000},"page":"52-61","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm\u2013Volterra integro-differential equation"],"prefix":"10.1016","volume":"252","author":[{"given":"M.I.","family":"Berenguer","sequence":"first","affiliation":[]},{"given":"D.","family":"G\u00e1mez","sequence":"additional","affiliation":[]},{"given":"A.J.","family":"L\u00f3pez Linares","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cam.2012.09.020_br000005","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1016\/j.mcm.2011.10.015","article-title":"A Bernstein operational matrix approach for solving a system of high order linear Volterra\u2013Fredholm integro-differential equations","volume":"55","author":"Maleknejad","year":"2012","journal-title":"Math. Comput. Modelling"},{"key":"10.1016\/j.cam.2012.09.020_br000010","doi-asserted-by":"crossref","first-page":"2367","DOI":"10.1016\/j.cam.2011.11.022","article-title":"The numerical solution of the non-linear integro-differential equations based on the meshless method","volume":"236","author":"Dehghan","year":"2012","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000015","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1016\/j.camwa.2008.03.045","article-title":"Numerical solution of nonlinear Volterra\u2013Fredholm integro-differential equations","volume":"56","author":"Darania","year":"2008","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.cam.2012.09.020_br000020","doi-asserted-by":"crossref","first-page":"3796","DOI":"10.1016\/j.cam.2012.01.026","article-title":"Convergence of the collocation method and the mechanical quadrature method for systems of singular integro-differential equations in Lebesgue spaces","volume":"236","author":"Caraus","year":"2012","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000025","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1080\/00207161003770394","article-title":"Solving nonlinear Volterra\u2013Fredholm integro-differential equations using He\u2019s variational iteration method","volume":"88","author":"Fariborzi Araghi","year":"2011","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000030","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1080\/00207160802036882","article-title":"A new computational method for solution of non-linear Volterra\u2013Fredholm integro-differential equations","volume":"87","author":"Maleknejad","year":"2010","journal-title":"Int. J. Comput. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000035","doi-asserted-by":"crossref","first-page":"2821","DOI":"10.1016\/j.camwa.2011.03.055","article-title":"Hybrid Legendre polynomials and Block\u2013Pulse functions approach for nonlinear Volterra\u2013Fredholm integro-differential equations","volume":"61","author":"Maleknejad","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.cam.2012.09.020_br000040","first-page":"8","article-title":"Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation","volume":"2009","author":"Berenguer","year":"2009","journal-title":"Fixed Point Theory A"},{"key":"10.1016\/j.cam.2012.09.020_br000045","first-page":"9","article-title":"Biorthogonal systems approximating the solution of the nonlinear Volterra integro-differential equation","volume":"2010","author":"Berenguer","year":"2010","journal-title":"Fixed Point Theory A"},{"key":"10.1016\/j.cam.2012.09.020_br000050","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1155\/2010\/135216","article-title":"Nonlinear Volterra integral equation of the second kind and biorthogonal systems","volume":"2010","author":"Berenguer","year":"2010","journal-title":"Abstr. Appl. Anal."},{"key":"10.1016\/j.cam.2012.09.020_br000055","doi-asserted-by":"crossref","first-page":"1875","DOI":"10.1016\/j.cam.2010.07.011","article-title":"Biorthogonal systems for solving Volterra integral equation system of the second kind","volume":"235","author":"Berenguer","year":"2011","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000060","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1155\/2012\/370894","article-title":"Fixed-point iterative algorithm for the linear Fredholm\u2013Volterra integro-differential equation","volume":"2012","author":"Berenguer","year":"2012","journal-title":"J. Appl. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000065","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.cam.2008.08.039","article-title":"High order nonlinear initial-value problems countably determined","volume":"228","author":"G\u00e1mez","year":"2009","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000070","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.na.2005.05.005","article-title":"Nonlinear initial-value problems and Schauder bases","volume":"63","author":"G\u00e1mez","year":"2005","journal-title":"Nonlinear Anal.-Theor."},{"key":"10.1016\/j.cam.2012.09.020_br000075","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1081\/NFA-200051625","article-title":"Isomorphisms, Schauder bases in Banach spaces and numerical solution of integral and differential equations","volume":"26","author":"Palomares","year":"2005","journal-title":"Numer. Funct. Anal. Optim."},{"key":"10.1016\/j.cam.2012.09.020_br000080","series-title":"Theoretical Numerical Analysis, A Functional Analysis Framework","author":"Atkinson","year":"2009"},{"key":"10.1016\/j.cam.2012.09.020_br000085","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.2140\/pjm.1961.11.1281","article-title":"Bases on tensor products of Banach spaces","volume":"11","author":"Gelbaum","year":"1961","journal-title":"Pacific J. Math."},{"key":"10.1016\/j.cam.2012.09.020_br000090","first-page":"387","article-title":"Product Schauder bases and approximation with nodes in spaces of continuous functions","volume":"11","author":"Semadeni","year":"1963","journal-title":"Bull. Acad. Polon. Sci."},{"issue":"2","key":"10.1016\/j.cam.2012.09.020_br000095","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.camwa.2009.03.087","article-title":"Numerical solution of nonlinear Volterra\u2013Fredholm integro-differential equations via direct method using triangular functions","volume":"58","author":"Babolian","year":"2009","journal-title":"Comput. Math. Appl."}],"container-title":["Journal of Computational and Applied Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042712003846?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0377042712003846?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,5,7]],"date-time":"2020-05-07T05:28:33Z","timestamp":1588829313000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0377042712003846"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,11]]},"references-count":19,"alternative-id":["S0377042712003846"],"URL":"https:\/\/doi.org\/10.1016\/j.cam.2012.09.020","relation":{},"ISSN":["0377-0427"],"issn-type":[{"value":"0377-0427","type":"print"}],"subject":[],"published":{"date-parts":[[2013,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm\u2013Volterra integro-differential equation","name":"articletitle","label":"Article Title"},{"value":"Journal of Computational and Applied Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cam.2012.09.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2012 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}