{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T00:25:56Z","timestamp":1720484756615},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41974002","42192532","42274005"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Geosciences"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.cageo.2023.105498","type":"journal-article","created":{"date-parts":[[2023,12,3]],"date-time":"2023-12-03T15:30:57Z","timestamp":1701617457000},"page":"105498","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Total water storage anomalies reconstruction using noise-augmented u-shaped network: A case study in the Yangtze River Basin"],"prefix":"10.1016","volume":"183","author":[{"given":"Jielong","family":"Wang","sequence":"first","affiliation":[]},{"given":"Ling","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yunzhong","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Qiujie","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.cageo.2023.105498_bib1","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/s40328-021-00338-4","article-title":"Long-term temporal prediction of terrestrial water storage changes over global basins using GRACE and limited GRACE-FO data","volume":"56","author":"Ahi","year":"2021","journal-title":"Acta Geodaetica et Geophysica"},{"key":"10.1016\/j.cageo.2023.105498_bib2","doi-asserted-by":"crossref","first-page":"1769","DOI":"10.3390\/rs11151769","article-title":"Forecasting GRACE data over the African watersheds using artificial neuralnetworks","volume":"11","author":"Ahmed","year":"2019","journal-title":"Rem. Sens."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-021-25257-4","article-title":"Seasonal Arctic sea ice forecasting with probabilistic deep learning","volume":"12","author":"Andersson","year":"2021","journal-title":"Nat. Commun."},{"key":"10.1016\/j.cageo.2023.105498_bib4","doi-asserted-by":"crossref","DOI":"10.1109\/IJCNN.1989.118439","article-title":"Neural network design: methodology","volume":"611","author":"Busch","year":"1989","journal-title":"IJCNN Int Jt Conf Neural Network"},{"issue":"3","key":"10.1016\/j.cageo.2023.105498_bib5","first-page":"1","article-title":"Observing seasonal steric sea level variations with GRACE and satellite altimetry","volume":"111","author":"Chambers","year":"2006","journal-title":"J. Geophys. Res.: Oceans"},{"issue":"3","key":"10.1016\/j.cageo.2023.105498_bib6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1061\/(ASCE)HE.1943-5584.0001882","article-title":"Impact of eastern Tibetan plateau glacier melt on land water storage change across the Yangtze River Basin","volume":"25","author":"Chao","year":"2020","journal-title":"J. Hydrol. Eng."},{"issue":"December 2022","key":"10.1016\/j.cageo.2023.105498_bib7","article-title":"Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin","volume":"879","author":"Chao","year":"2023","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.cageo.2023.105498_bib8","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1016\/j.scitotenv.2018.08.352","article-title":"Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations","volume":"649","author":"Chen","year":"2019","journal-title":"Sci. Total Environ."},{"issue":"10","key":"10.1016\/j.cageo.2023.105498_bib9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2020WR028032","article-title":"Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: a case study in the Amazon basin","volume":"56","author":"Chen","year":"2020","journal-title":"Water Resour. Res."},{"issue":"8","key":"10.1016\/j.cageo.2023.105498_bib10","doi-asserted-by":"crossref","DOI":"10.3390\/rs10081168","article-title":"Drought and flood monitoring of the Liao River Basin in Northeast China using extended GRACE data","volume":"10","author":"Chen","year":"2018","journal-title":"Rem. Sens."},{"key":"10.1016\/j.cageo.2023.105498_bib11","first-page":"1135","article-title":"Convolutional neural network committees for handwritten character classification","volume":"10","author":"Cire\u015fan","year":"2011","journal-title":"Proceedings of the International Conference on Document Analysis and Recognition, ICDAR"},{"issue":"November 2018","key":"10.1016\/j.cageo.2023.105498_bib12","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.jhydrol.2016.11.006","article-title":"Influences of recent climate change and human activities on water storage variations in Central Asia","volume":"544","author":"Deng","year":"2017","journal-title":"J. Hydrol."},{"issue":"July 2021","key":"10.1016\/j.cageo.2023.105498_bib14","article-title":"Groundwater storage change and driving factor analysis in north China using independent component decomposition","volume":"609","author":"Feng","year":"2022","journal-title":"J. Hydrol."},{"key":"10.1016\/j.cageo.2023.105498_bib15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jhydrol.2023.129331","article-title":"Spatiotemporal variability and driving factors of the shallow soil moisture in North China during the past 31 years","volume":"619","author":"Feng","year":"2023","journal-title":"J. Hydrol."},{"issue":"2","key":"10.1016\/j.cageo.2023.105498_bib16","article-title":"A multi-sourced data retrodiction of remotely sensed terrestrial water storage changes for West Africa","volume":"11","author":"Ferreira","year":"2019","journal-title":"Water (Switzerland)"},{"issue":"10","key":"10.1016\/j.cageo.2023.105498_bib17","doi-asserted-by":"crossref","DOI":"10.3390\/rs12101639","article-title":"An iterative ICA-based reconstruction method to produce consistent time-variable total water storage fields using GRACE and Swarm satellite data","volume":"12","author":"Forootan","year":"2020","journal-title":"Rem. Sens."},{"issue":"5","key":"10.1016\/j.cageo.2023.105498_bib18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/rs13050953","article-title":"Twentieth and twenty-first century water storage changes in the nile river basin from grace\/grace-fo and modeling","volume":"13","author":"Hasan","year":"2021","journal-title":"Rem. Sens."},{"key":"10.1016\/j.cageo.2023.105498_bib19","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1007\/978-3-319-10578-9_23","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"8691","author":"He","year":"2014","journal-title":"Lect. Notes Comput. Sci."},{"issue":"10","key":"10.1016\/j.cageo.2023.105498_bib20","doi-asserted-by":"crossref","first-page":"8494","DOI":"10.1002\/2015WR016923","article-title":"Estimation of human\u2010induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: a case study of the Yangtze River basin","volume":"51","author":"Huang","year":"2015","journal-title":"Water Resour. Res."},{"issue":"5","key":"10.1016\/j.cageo.2023.105498_bib21","doi-asserted-by":"crossref","first-page":"2300","DOI":"10.1002\/2017GL072564","article-title":"A global reconstruction of climate-driven subdecadal water storage variability","volume":"44","author":"Humphrey","year":"2017","journal-title":"Geophys. Res. Lett."},{"issue":"April","key":"10.1016\/j.cageo.2023.105498_bib22","article-title":"Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure","volume":"590","author":"Jing","year":"2020","journal-title":"J. Hydrol."},{"key":"10.1016\/j.cageo.2023.105498_bib23","doi-asserted-by":"crossref","first-page":"1557","DOI":"10.1016\/j.scitotenv.2018.08.079","article-title":"The application of multi-mission satellite data assimilation for studying water storage changes over South America","volume":"647","author":"Khaki","year":"2019","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.cageo.2023.105498_bib24","article-title":"Local-scale monitoring of evapotranspiration based on downscaled GRACE observations and remotely sensed data: an application of terrestrial water balance approach","author":"Khorrami","year":"2023","journal-title":"Earth Sci. Inform."},{"key":"10.1016\/j.cageo.2023.105498_bib25","first-page":"1","article-title":"Uncertainty in GRACE\/GRACE - follow on global ocean mass change estimates due to mis - modeled glacial isostatic adjustment and geocenter motion","author":"Kim","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cageo.2023.105498_bib26","first-page":"1746","article-title":"Convolutional neural networks for sentence classification. EMNLP 2014 - 2014 conference on empirical methods in natural language processing","author":"Kim","year":"2014","journal-title":"Proceedings of the Conference"},{"issue":"March","key":"10.1016\/j.cageo.2023.105498_bib27","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1016\/j.jhydrol.2018.10.038","article-title":"A comparative study of available water in the major river basins of the world","volume":"567","author":"Lakshmi","year":"2018","journal-title":"J. Hydrol."},{"issue":"5","key":"10.1016\/j.cageo.2023.105498_bib28","doi-asserted-by":"crossref","DOI":"10.1029\/2019WR026551","article-title":"Comparison of data-driven techniques to reconstruct (1992\u20132002) and predict (2017\u20132018) GRACE-like gridded total water storage changes using climate inputs","volume":"56","author":"Li","year":"2020","journal-title":"Water Resour. Res."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00190-020-01460-x","article-title":"A hybrid approach for recovering high-resolution temporal gravity fields from satellite laser ranging","volume":"95","author":"L\u00f6cher","year":"2021","journal-title":"J. Geodesy"},{"issue":"April","key":"10.1016\/j.cageo.2023.105498_bib30","first-page":"1","article-title":"Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?","volume":"6","author":"Long","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.cageo.2023.105498_bib31","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2014.08.006","article-title":"Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data","volume":"155","author":"Long","year":"2014","journal-title":"Rem. Sens. Environ."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib32","doi-asserted-by":"crossref","DOI":"10.1038\/s41467-020-17428-6","article-title":"South-to-North Water Diversion stabilizing Beijing's groundwater levels","volume":"11","author":"Long","year":"2020","journal-title":"Nat. Commun."},{"key":"10.1016\/j.cageo.2023.105498_bib33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jhydrol.2021.127244","article-title":"Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap","volume":"604","author":"Mo","year":"2022","journal-title":"J. Hydrol."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib34","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/s11269-015-1161-1","article-title":"Reconstructed terrestrial water storage change (\u0394TWS) from 1948 to 2012 over the Amazon Basin with the latest GRACE and GLDAS products","volume":"30","author":"Nie","year":"2016","journal-title":"Water Resour. Manag."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib35","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1002\/2016GL071287","article-title":"Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China","volume":"44","author":"Pan","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.cageo.2023.105498_bib36","author":"Papa"},{"issue":"11","key":"10.1016\/j.cageo.2023.105498_bib37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2008GL033857","article-title":"Variations of surface water extent and water storage in large river basins: a comparison of different global data sources","volume":"35","author":"Papa","year":"2008","journal-title":"Geophys. Res. Lett."},{"issue":"1","key":"10.1016\/j.cageo.2023.105498_bib38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-80752-w","article-title":"Reconstructing GRACE-type time-variable gravity from the Swarm satellites","volume":"11","author":"Richter","year":"2021","journal-title":"Sci. Rep."},{"issue":"6","key":"10.1016\/j.cageo.2023.105498_bib39","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1007\/s10712-013-9276-5","article-title":"Can GPS-derived surface loading bridge a GRACE mission gap?","volume":"35","author":"Rietbroek","year":"2014","journal-title":"Surv. Geophys."},{"issue":"3","key":"10.1016\/j.cageo.2023.105498_bib40","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1175\/BAMS-85-3-381","article-title":"The global land data assimilation System","volume":"85","author":"Rodell","year":"2004","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"10.1016\/j.cageo.2023.105498_bib41","series-title":"The Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"7","key":"10.1016\/j.cageo.2023.105498_bib42","doi-asserted-by":"crossref","first-page":"6048","DOI":"10.1002\/2013JB010923","article-title":"A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data","volume":"119","author":"Schrama","year":"2014","journal-title":"J. Geophys. Res. Solid Earth"},{"issue":"October 2017","key":"10.1016\/j.cageo.2023.105498_bib43","doi-asserted-by":"crossref","first-page":"31865","DOI":"10.1109\/ACCESS.2021.3051049","article-title":"Improving the reliability of the prediction of terrestrial water storage in Yunnan using the artificial neural network selective joint prediction model","volume":"9","author":"Shi","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.cageo.2023.105498_bib44","doi-asserted-by":"crossref","first-page":"1179","DOI":"10.1029\/2018WR023333","article-title":"Combining physically based modeling and deep learning for fusing GRACE satellite data: can we learn from mismatch?","author":"Sun","year":"2019","journal-title":"Water Resour. Res."},{"issue":"4","key":"10.1016\/j.cageo.2023.105498_bib45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2019WR026250","article-title":"Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins","volume":"56","author":"Sun","year":"2020","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.cageo.2023.105498_bib46","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1016\/j.scitotenv.2018.03.292","article-title":"Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China","volume":"634","author":"Sun","year":"2018","journal-title":"Sci. Total Environ."},{"issue":"5","key":"10.1016\/j.cageo.2023.105498_bib47","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1038\/s41558-019-0456-2","article-title":"Contributions of GRACE to understanding climate change","volume":"9","author":"Tapley","year":"2019","journal-title":"Nat. Clim. Change"},{"key":"10.1016\/j.cageo.2023.105498_bib48","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.patrec.2021.01.036","article-title":"SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture","volume":"145","author":"Trebing","year":"2021","journal-title":"Pattern Recogn. Lett."},{"issue":"2","key":"10.1016\/j.cageo.2023.105498_bib49","doi-asserted-by":"crossref","first-page":"904","DOI":"10.1002\/wrcr.20078","article-title":"Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region","volume":"49","author":"Voss","year":"2013","journal-title":"Water Resour. Res."},{"issue":"October 2020","key":"10.1016\/j.cageo.2023.105498_bib51","article-title":"Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multihannel singular spectrum analysis","volume":"594","author":"Wang","year":"2021","journal-title":"J. Hydrol."},{"issue":"July","key":"10.1016\/j.cageo.2023.105498_bib52","article-title":"Drought evaluation over Yangtze River basin based on weighted water storage deficit","volume":"591","author":"Wang","year":"2020","journal-title":"J. Hydrol."},{"key":"10.1016\/j.cageo.2023.105498_bib53","article-title":"The applicability of using NARX neural network to forecast GRACE terrestrial water storage anomalies","author":"Wang","year":"2021","journal-title":"Nat. Hazards"},{"key":"10.1016\/j.cageo.2023.105498_bib54","article-title":"Using NARX neural network to forecast droughts and floods over Yangtze River Basin","author":"Wang","year":"2021","journal-title":"Nat. Hazards"},{"key":"10.1016\/j.cageo.2023.105498_bib55","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.rse.2014.06.004","article-title":"Monitoring decadal lake dynamics across the Yangtze basin downstream of three Gorges dam","volume":"152","author":"Wang","year":"2014","journal-title":"Rem. Sens. Environ."},{"key":"10.1016\/j.cageo.2023.105498_bib56","doi-asserted-by":"crossref","first-page":"2648","DOI":"10.1002\/2014JB011547","article-title":"Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons","volume":"120","author":"Watkins","year":"2015","journal-title":"J. Geophys. Res. Solid Earth"},{"key":"10.1016\/j.cageo.2023.105498_bib57","series-title":"JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL06 CRI Filtered Version 02. Ver. 02","author":"Wiese","year":"2019"},{"issue":"3","key":"10.1016\/j.cageo.2023.105498_bib58","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1175\/JHM583.1","article-title":"A gauge-based analysis of daily precipitation over East Asia","volume":"8","author":"Xie","year":"2007","journal-title":"J. Hydrometeorol."},{"key":"10.1016\/j.cageo.2023.105498_bib59","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2022.128098","article-title":"Improving understanding of spatiotemporal water storage changes over China based on multiple datasets","volume":"612","author":"Yin","year":"2022","journal-title":"J. Hydrol."},{"issue":"3","key":"10.1016\/j.cageo.2023.105498_bib60","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1175\/JHM-D-15-0084.1","article-title":"GRACE-based hydrological drought evaluation of the Yangtze River basin, China","volume":"17","author":"Zhang","year":"2016","journal-title":"J. Hydrometeorol."},{"key":"10.1016\/j.cageo.2023.105498_bib61","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.neucom.2018.09.038","article-title":"Recent advances in convolutional neural network acceleration","volume":"323","author":"Zhang","year":"2019","journal-title":"Neurocomputing"}],"container-title":["Computers & Geosciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098300423002029?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098300423002029?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,10]],"date-time":"2024-01-10T03:19:19Z","timestamp":1704856759000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0098300423002029"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":59,"alternative-id":["S0098300423002029"],"URL":"https:\/\/doi.org\/10.1016\/j.cageo.2023.105498","relation":{},"ISSN":["0098-3004"],"issn-type":[{"value":"0098-3004","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Total water storage anomalies reconstruction using noise-augmented u-shaped network: A case study in the Yangtze River Basin","name":"articletitle","label":"Article Title"},{"value":"Computers & Geosciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cageo.2023.105498","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105498"}}