{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T14:38:41Z","timestamp":1723300721971},"reference-count":74,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Geosciences"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.cageo.2021.104790","type":"journal-article","created":{"date-parts":[[2021,5,21]],"date-time":"2021-05-21T16:39:48Z","timestamp":1621615188000},"page":"104790","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["An object-oriented optimization framework for large-scale inverse problems"],"prefix":"10.1016","volume":"154","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3305-0982","authenticated-orcid":false,"given":"Ettore","family":"Biondi","sequence":"first","affiliation":[]},{"given":"Guillaume","family":"Barnier","sequence":"additional","affiliation":[]},{"given":"Robert G.","family":"Clapp","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2162-9671","authenticated-orcid":false,"given":"Francesco","family":"Picetti","sequence":"additional","affiliation":[]},{"given":"Stuart","family":"Farris","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cageo.2021.104790_bib1","series-title":"Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems","author":"Abadi","year":"2016"},{"key":"10.1016\/j.cageo.2021.104790_bib2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3344587","article-title":"PETSc DMNetwork: a library for scalable network PDE-based multiphysics simula- tions","volume":"46","author":"Abhyankar","year":"2020","journal-title":"ACM Trans. Math Software"},{"key":"10.1016\/j.cageo.2021.104790_bib3","series-title":"Parameter Estimation and Inverse Prob- Lems","author":"Aster","year":"2018"},{"key":"10.1016\/j.cageo.2021.104790_bib4","series-title":"SEG Technical Program Expanded Abstracts 2029","article-title":"Full waveform inversion by model extension using a model-space multi-scale approach","author":"Barnier","year":"2020"},{"key":"10.1016\/j.cageo.2021.104790_bib5","series-title":"SEG Technical Program Expanded Abstracts 2018","first-page":"1183","article-title":"Full waveform inversion by model extension","author":"Barnier","year":"2018"},{"key":"10.1016\/j.cageo.2021.104790_bib6","first-page":"1","article-title":"A modified approach for tomographic full wave- form inversion using variable projection","volume":"vol. 2018","author":"Barnier","year":"2018"},{"key":"10.1016\/j.cageo.2021.104790_bib7","first-page":"1","article-title":"Tomographic full waveform inversion via iterative least-squares migration by variable projection method","volume":"vol. 2018","author":"Barnier","year":"2018"},{"key":"10.1016\/j.cageo.2021.104790_bib8","series-title":"SEG Technical Program Expanded Abstracts 2019","first-page":"1400","article-title":"Waveform inversion by model reduction using spline interpolation","author":"Barnier","year":"2019"},{"key":"10.1016\/j.cageo.2021.104790_bib9","doi-asserted-by":"crossref","first-page":"1221","DOI":"10.1137\/17M1140480","article-title":"Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD","volume":"39","author":"Batselier","year":"2018","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.cageo.2021.104790_bib10","doi-asserted-by":"crossref","first-page":"1514","DOI":"10.1190\/1.1441434","article-title":"Reverse time migration","volume":"48","author":"Baysal","year":"1983","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib11","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear in- verse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imag. Sci."},{"key":"10.1016\/j.cageo.2021.104790_bib12","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1016\/j.compchemeng.2008.08.006","article-title":"Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization","volume":"33","author":"Biegler","year":"2009","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.cageo.2021.104790_bib13","doi-asserted-by":"crossref","first-page":"104423","DOI":"10.1016\/j.cageo.2020.104423","article-title":"ResIPy, an intuitive opensource software for complex geoelectrical inversion\/modeling","volume":"137","author":"Blanchy","year":"2020","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib14","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1137\/16M1080173","article-title":"Optimization methods for large-scale machine learning","volume":"60","author":"Bottou","year":"2018","journal-title":"SIAM Rev."},{"key":"10.1016\/j.cageo.2021.104790_bib15","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1190\/1.1443880","article-title":"Multiscale seismic waveform inversion","volume":"60","author":"Bunks","year":"1995","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib16","doi-asserted-by":"crossref","first-page":"728","DOI":"10.1109\/TMI.2015.2493241","article-title":"Compressive deconvolution in medical ultrasound imaging","volume":"35","author":"Chen","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.cageo.2021.104790_bib17","volume":"vol. 6","author":"Claerbout","year":"1992"},{"key":"10.1016\/j.cageo.2021.104790_bib18","first-page":"319","volume":"vol. 168","author":"Clapp","year":"2017"},{"key":"10.1016\/j.cageo.2021.104790_bib19","series-title":"Dask: Library for Dynamic Task Scheduling","author":"Dask Development Team","year":"2016"},{"key":"10.1016\/j.cageo.2021.104790_bib20","series-title":"Implementing a Smooth Exact Penalty Function for Equality-Constrained Nonlinear Optimization","author":"Estrin","year":"2019"},{"key":"10.1016\/j.cageo.2021.104790_bib21","series-title":"Full Seismic Waveform Modelling and Inversion","author":"Fichtner","year":"2010"},{"key":"10.1016\/j.cageo.2021.104790_bib22","first-page":"149","article-title":"Function minimization by conjugate gradients","volume":"7","author":"Fletcher","year":"1964","journal-title":"The Com- puter Journal"},{"key":"10.1016\/j.cageo.2021.104790_bib23","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1137\/S0036144504446096","article-title":"SNOPT: an SQP algorithm for large-scale constrained optimization","volume":"47","author":"Gill","year":"2005","journal-title":"SIAM Rev."},{"key":"10.1016\/j.cageo.2021.104790_bib24","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1137\/080725891","article-title":"The split bregman method for L1-regularized problems","volume":"2","author":"Goldstein","year":"2009","journal-title":"SIAM J. Imag. Sci."},{"key":"10.1016\/j.cageo.2021.104790_bib25","doi-asserted-by":"crossref","first-page":"R1","DOI":"10.1088\/0266-5611\/19\/2\/201","article-title":"Separable nonlinear least squares: the variable projection method and its applications","volume":"19","author":"Golub","year":"2003","journal-title":"Inverse Probl."},{"key":"10.1016\/j.cageo.2021.104790_bib26","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1137\/0710036","article-title":"The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate","volume":"10","author":"Golub","year":"1973","journal-title":"SIAM J. Numer. Anal."},{"key":"10.1016\/j.cageo.2021.104790_bib27","volume":"vol. 3","author":"Golub","year":"2012"},{"key":"10.1016\/j.cageo.2021.104790_bib28","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1016\/0167-8191(96)00024-5","article-title":"A high-performance, portable imple- mentation of the MPI message passing interface standard","volume":"22","author":"Gropp","year":"1996","journal-title":"Parallel Comput."},{"key":"10.1016\/j.cageo.2021.104790_bib29","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1190\/1.1598124","article-title":"Robust inversion of seismic data using the huber norm","volume":"68","author":"Guitton","year":"2003","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib30","volume":"vol. 3","author":"Hansen","year":"2006"},{"key":"10.1016\/j.cageo.2021.104790_bib31","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1038\/s41586-020-2649-2","article-title":"Array programming with NumPy","volume":"585","author":"Harris","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.cageo.2021.104790_bib32","series-title":"SEG Technical Program Expanded Abstracts 2015","first-page":"1326","article-title":"Born waveform inversion via variable projection and shot record model extension","author":"Huang","year":"2015"},{"key":"10.1016\/j.cageo.2021.104790_bib33","series-title":"pybind11 \u2013 Seamless Operability between C++11 and python","author":"Jakob","year":"2017"},{"key":"10.1016\/j.cageo.2021.104790_bib34","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/BF01932995","article-title":"A variable projection method for solving separable nonlinear least squares prob- lems","volume":"15","author":"Kaufman","year":"1975","journal-title":"BIT Numerical Mathematics"},{"key":"10.1016\/j.cageo.2021.104790_bib35","doi-asserted-by":"crossref","first-page":"104503","DOI":"10.1016\/j.cageo.2020.104503","article-title":"A pipeline approach for three dimensional time-domain finite-difference multi-parameter waveform inversion on GPUs","volume":"140","author":"Le","year":"2020","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib36","doi-asserted-by":"crossref","first-page":"1090","DOI":"10.1137\/14098154X","article-title":"Structure tensor total varia- tion","volume":"8","author":"Lefkimmiatis","year":"2015","journal-title":"SIAM J. Imag. Sci."},{"key":"10.1016\/j.cageo.2021.104790_bib37","doi-asserted-by":"crossref","first-page":"1174","DOI":"10.1016\/j.cageo.2010.08.001","article-title":"3D porosity prediction from seismic inversion and neural networks","volume":"37","author":"Leite","year":"2011","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib38","doi-asserted-by":"crossref","first-page":"U89","DOI":"10.1190\/geo2013-0058.1","article-title":"First-break traveltime tomography with the double- square-root eikonal equation","volume":"78","author":"Li","year":"2013","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib39","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/BF01589116","article-title":"On the limited memory BFGS method for large scale optimization","volume":"45","author":"Liu","year":"1989","journal-title":"Math. Program."},{"key":"10.1016\/j.cageo.2021.104790_bib40","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.cageo.2018.12.007","article-title":"Accelerating geostatistical seismic inversion using TensorFlow: a heterogeneous distributed deep learning framework","volume":"124","author":"Liu","year":"2019","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib41","series-title":"IEEE Transactions on Information Forensics and Security (TIFS)","article-title":"Facing device attribution problem for stabilized video sequences","author":"Mandelli","year":"2019"},{"key":"10.1016\/j.cageo.2021.104790_bib42","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1190\/1.2172306","article-title":"An elastic upgrade for mar- mousi","volume":"25","author":"Martin","year":"2006","journal-title":"Lead. Edge"},{"key":"10.1016\/j.cageo.2021.104790_bib43","series-title":"Handbook of Convex Optimization Methods in Imaging Science","first-page":"71","article-title":"Optimization methods for synthetic aperture radar imaging","author":"Mason","year":"2018"},{"key":"10.1016\/j.cageo.2021.104790_bib44","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/0005-1098(82)90104-2","article-title":"Computer-aided design via optimization: a review","volume":"18","author":"Mayne","year":"1982","journal-title":"Automatica"},{"key":"10.1016\/j.cageo.2021.104790_bib45","doi-asserted-by":"crossref","first-page":"F1","DOI":"10.1190\/geo2015-0031.1","article-title":"The SEISCOPE optimization toolbox: a large-scale nonlin- ear optimization library based on reverse communicationthe seiscope optimization toolbox","volume":"81","author":"M\u00e9tivier","year":"2016","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib46","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1063\/1.1699114","article-title":"Equation of state calculations by fast computing machines","volume":"21","author":"Metropolis","year":"1953","journal-title":"J. Chem. Phys."},{"key":"10.1016\/j.cageo.2021.104790_bib47","doi-asserted-by":"crossref","DOI":"10.1145\/1236463.1236467","article-title":"Opt++ an object-oriented toolkit for nonlinear optimization","volume":"33","author":"Meza","year":"2007","journal-title":"ACM Trans. Math Software"},{"key":"10.1016\/j.cageo.2021.104790_bib48","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.cageo.2018.02.004","article-title":"SeisFlows\u2014flexible waveform inversion software","volume":"115","author":"Modrak","year":"2018","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib49","doi-asserted-by":"crossref","first-page":"12431","DOI":"10.1029\/94JB03097","article-title":"Monte Carlo sampling of solutions to inverse problems","volume":"100","author":"Mosegaard","year":"1995","journal-title":"J. Geophys. Res.: Solid Earth"},{"key":"10.1016\/j.cageo.2021.104790_bib50","series-title":"Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS)","article-title":"CuPy: a numpy-compatible library for nvidia gpu calcu- lations","author":"Nishino","year":"2017"},{"key":"10.1016\/j.cageo.2021.104790_bib51","series-title":"Numerical Optimization","author":"Nocedal","year":"2006"},{"key":"10.1016\/j.cageo.2021.104790_bib52","volume":"vol. 1","author":"Oliphant","year":"2006"},{"key":"10.1016\/j.cageo.2021.104790_bib53","first-page":"80","article-title":"A survey of general-purpose computation on graphics hardware","volume":"vol. 26","author":"Owens","year":"2007"},{"key":"10.1016\/j.cageo.2021.104790_bib54","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1109\/TUFFC.2017.2757880","article-title":"Inverse problem of ultrasound beamforming with sparsity constraints and regularization","volume":"65","author":"Ozkan","year":"2017","journal-title":"IEEE Trans. Ultrason. Ferroelectrics Freq. Contr."},{"key":"10.1016\/j.cageo.2021.104790_bib55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1499096.1499097","article-title":"A software framework for abstract expres- sion of coordinate-free linear algebra and optimization algorithms","volume":"36","author":"Padula","year":"2009","journal-title":"ACM Trans. Math Software"},{"key":"10.1016\/j.cageo.2021.104790_bib56","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1145\/355984.355989","article-title":"LSQR: an algorithm for sparse linear equations and sparse least squares","volume":"8","author":"Paige","year":"1982","journal-title":"ACM Trans. Math Software"},{"key":"10.1016\/j.cageo.2021.104790_bib57","series-title":"Advances in Neural Information Processing Systems","first-page":"8026","article-title":"Pytorch: an imperative style, high- performance deep learning library","author":"Paszke","year":"2019"},{"key":"10.1016\/j.cageo.2021.104790_bib58","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1007\/s00158-011-0666-3","article-title":"pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization","volume":"45","author":"Perez","year":"2012","journal-title":"Struct. Multidiscip. Optim."},{"key":"10.1016\/j.cageo.2021.104790_bib59","doi-asserted-by":"crossref","first-page":"100361","DOI":"10.1016\/j.softx.2019.100361","article-title":"PyLops\u2014a linear-operator Python library for scalable alge- bra and optimization","volume":"11","author":"Ravasi","year":"2020","journal-title":"Software"},{"key":"10.1016\/j.cageo.2021.104790_bib60","series-title":"Proceedings of the 14th Python in Science Conference","doi-asserted-by":"crossref","first-page":"130","DOI":"10.25080\/Majora-7b98e3ed-013","article-title":"Dask: parallel computation with blocked algorithms and task scheduling","author":"Rocklin","year":"2015"},{"key":"10.1016\/j.cageo.2021.104790_bib61","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.cageo.2017.07.011","article-title":"pyGIMLi: an open-source library for mod- elling and inversion in geophysics","volume":"109","author":"R\u00fccker","year":"2017","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib62","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1016\/j.cageo.2010.01.011","article-title":"Inversion of self-potential of idealized bodies' anomalies using particle swarm optimization","volume":"36","author":"Santos","year":"2010","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib63","doi-asserted-by":"crossref","first-page":"1307","DOI":"10.1137\/0907087","article-title":"Linear inversion of band-limited reflection seismograms","volume":"7","author":"Santosa","year":"1986","journal-title":"SIAM J. Sci. Stat. Comput."},{"key":"10.1016\/j.cageo.2021.104790_bib64","doi-asserted-by":"crossref","first-page":"R119","DOI":"10.1190\/geo2016-0010.1","article-title":"Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm","volume":"82","author":"Sen","year":"2017","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib65","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1073\/pnas.93.4.1591","article-title":"A fast marching level set method for monotonically advancing fronts","volume":"93","author":"Sethian","year":"1996","journal-title":"Proc. Natl. Acad. Sci. Unit. States Am."},{"key":"10.1016\/j.cageo.2021.104790_bib66","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TNS.1974.6499235","article-title":"The Fourier reconstruction of a head section","volume":"21","author":"Shepp","year":"1974","journal-title":"IEEE Trans. Nucl. Sci."},{"key":"10.1016\/j.cageo.2021.104790_bib67","doi-asserted-by":"crossref","first-page":"2111","DOI":"10.1016\/j.cageo.2009.04.002","article-title":"Modelling and compact inversion of magnetic data: a Matlab code","volume":"35","author":"Stocco","year":"2009","journal-title":"Comput. Geosci."},{"key":"10.1016\/j.cageo.2021.104790_bib68","doi-asserted-by":"crossref","first-page":"WCA95","DOI":"10.1190\/1.3204768","article-title":"Target-oriented wave-equation least-squares migration\/inversion with phase-encoded hessian","volume":"74","author":"Tang","year":"2009","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib69","doi-asserted-by":"crossref","first-page":"1259","DOI":"10.1190\/1.1441754","article-title":"Inversion of seismic reflection data in the acoustic approximation","volume":"49","author":"Tarantola","year":"1984","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib70","volume":"vol. 89","author":"Tarantola","year":"2005"},{"key":"10.1016\/j.cageo.2021.104790_bib71","doi-asserted-by":"crossref","first-page":"WCC1","DOI":"10.1190\/1.3238367","article-title":"An overview of full-waveform inversion in exploration geophysics","volume":"74","author":"Virieux","year":"2009","journal-title":"Geophysics"},{"key":"10.1016\/j.cageo.2021.104790_bib72","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1038\/s41592-019-0686-2","article-title":"SciPy 1.0: fundamental algorithms for scientific computing in Python","volume":"17","author":"Virtanen","year":"2020","journal-title":"Nat. Methods"},{"key":"10.1016\/j.cageo.2021.104790_bib73","doi-asserted-by":"crossref","first-page":"2378","DOI":"10.1785\/0220190318","article-title":"Pykonal: a Python package for solving the eikonal equation in spherical and cartesian coordinates using the fast marching method","volume":"91","author":"White","year":"2020","journal-title":"Seismol Res. Lett."},{"key":"10.1016\/j.cageo.2021.104790_bib74","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1145\/279232.279236","article-title":"Algorithm 778: l-BFGS-B: fortran subrou- tines for large-scale bound-constrained optimization","volume":"23","author":"Zhu","year":"1997","journal-title":"ACM Trans. Math Software"}],"container-title":["Computers & Geosciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098300421000935?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098300421000935?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,4]],"date-time":"2023-01-04T07:19:55Z","timestamp":1672816795000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0098300421000935"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":74,"alternative-id":["S0098300421000935"],"URL":"https:\/\/doi.org\/10.1016\/j.cageo.2021.104790","relation":{},"ISSN":["0098-3004"],"issn-type":[{"value":"0098-3004","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An object-oriented optimization framework for large-scale inverse problems","name":"articletitle","label":"Article Title"},{"value":"Computers & Geosciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cageo.2021.104790","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104790"}}