{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T15:31:54Z","timestamp":1720452714936},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Graphics"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.cag.2022.07.020","type":"journal-article","created":{"date-parts":[[2022,7,27]],"date-time":"2022-07-27T05:42:57Z","timestamp":1658900577000},"page":"231-240","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["SHREC\u201922 track: Open-Set 3D Object Retrieval"],"prefix":"10.1016","volume":"107","author":[{"given":"Yifan","family":"Feng","sequence":"first","affiliation":[]},{"given":"Yue","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Xibin","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yandong","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Nihar","family":"Bagewadi","sequence":"additional","affiliation":[]},{"given":"Nhat-Tan","family":"Bui","sequence":"additional","affiliation":[]},{"given":"Hieu","family":"Dao","sequence":"additional","affiliation":[]},{"given":"Shankar","family":"Gangisetty","sequence":"additional","affiliation":[]},{"given":"Ripeng","family":"Guan","sequence":"additional","affiliation":[]},{"given":"Xie","family":"Han","sequence":"additional","affiliation":[]},{"given":"Cong","family":"Hua","sequence":"additional","affiliation":[]},{"given":"Chidambar","family":"Hunakunti","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Shichao","family":"Jiao","sequence":"additional","affiliation":[]},{"given":"Yuqi","family":"Ke","sequence":"additional","affiliation":[]},{"given":"Liqun","family":"Kuang","sequence":"additional","affiliation":[]},{"given":"Anan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Dinh-Huan","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Hai-Dang","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Weizhi","family":"Nie","sequence":"additional","affiliation":[]},{"given":"Bang-Dang","family":"Pham","sequence":"additional","affiliation":[]},{"given":"Karthik","family":"Raikar","sequence":"additional","affiliation":[]},{"given":"Qingmei","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Minh-Triet","family":"Tran","sequence":"additional","affiliation":[]},{"given":"Jialong","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Chenggang","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Haoxuan","family":"You","sequence":"additional","affiliation":[]},{"given":"Difei","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cag.2022.07.020_b1","doi-asserted-by":"crossref","unstructured":"Feng Y, Feng Y, You H, Zhao X, Gao Y. Meshnet: Mesh neural network for 3d shape representation. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 33; 2019, pp. 8279\u201386.","DOI":"10.1609\/aaai.v33i01.33018279"},{"issue":"4","key":"10.1016\/j.cag.2022.07.020_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3306346.3322959","article-title":"Meshcnn: a network with an edge","volume":"38","author":"Hanocka","year":"2019","journal-title":"ACM Trans Graph"},{"issue":"3","key":"10.1016\/j.cag.2022.07.020_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3506694","article-title":"Subdivision-based mesh convolution networks","volume":"41","author":"Hu","year":"2022","journal-title":"ACM Trans Graph"},{"key":"10.1016\/j.cag.2022.07.020_b4","unstructured":"Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017, pp. 652\u201360."},{"key":"10.1016\/j.cag.2022.07.020_b5","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","volume":"30","author":"Qi","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"issue":"5","key":"10.1016\/j.cag.2022.07.020_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"ACM Trans Graph (Tog)"},{"key":"10.1016\/j.cag.2022.07.020_b7","series-title":"2015 IEEE\/RSJ international conference on intelligent robots and systems (IROS)","first-page":"922","article-title":"Voxnet: A 3d convolutional neural network for real-time object recognition","author":"Maturana","year":"2015"},{"key":"10.1016\/j.cag.2022.07.020_b8","doi-asserted-by":"crossref","unstructured":"Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018, pp. 4490\u201399.","DOI":"10.1109\/CVPR.2018.00472"},{"key":"10.1016\/j.cag.2022.07.020_b9","doi-asserted-by":"crossref","unstructured":"Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision; 2015, pp. 945\u201353.","DOI":"10.1109\/ICCV.2015.114"},{"key":"10.1016\/j.cag.2022.07.020_b10","doi-asserted-by":"crossref","unstructured":"Feng Y, Zhang Z, Zhao X, Ji R, Gao Y. Gvcnn: Group-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018, pp. 264\u201372.","DOI":"10.1109\/CVPR.2018.00035"},{"key":"10.1016\/j.cag.2022.07.020_b11","doi-asserted-by":"crossref","unstructured":"Jing L, Vahdani E, Tan J, Tian Y. Cross-Modal Center Loss for 3D cross-modal retrieval. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (CVPR); 2021, pp. 3142\u201351.","DOI":"10.1109\/CVPR46437.2021.00316"},{"key":"10.1016\/j.cag.2022.07.020_b12","doi-asserted-by":"crossref","unstructured":"You H, Feng Y, Ji R, Gao Y. Pvnet: A joint convolutional network of point cloud and multi-view for 3d shape recognition. In: Proceedings of the 26th ACM international conference on multimedia; 2018, pp. 1310\u201318.","DOI":"10.1145\/3240508.3240702"},{"key":"10.1016\/j.cag.2022.07.020_b13","doi-asserted-by":"crossref","unstructured":"You H, Feng Y, Zhao X, Zou C, Ji R, Gao Y. PVRNet: Point-view relation neural network for 3D shape recognition. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33; 2019, pp. 9119\u201326.","DOI":"10.1609\/aaai.v33i01.33019119"},{"key":"10.1016\/j.cag.2022.07.020_b14","doi-asserted-by":"crossref","unstructured":"Nie W, Liang Q, Liu A-A, Mao Z, Li Y. MMJN: Multi-modal joint networks for 3D shape recognition. In: Proceedings of the 27th ACM international conference on multimedia; 2019, pp. 908\u201316.","DOI":"10.1145\/3343031.3351009"},{"key":"10.1016\/j.cag.2022.07.020_b15","unstructured":"Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015, pp. 1912\u201320."},{"key":"10.1016\/j.cag.2022.07.020_b16","series-title":"Robust watertight manifold surface generation method for shapenet models","author":"Huang","year":"2018"},{"key":"10.1016\/j.cag.2022.07.020_b17","series-title":"Comput Graph Forum","first-page":"223","article-title":"On visual similarity based 3D model retrieval","volume":"22","author":"Chen","year":"2003"},{"issue":"4","key":"10.1016\/j.cag.2022.07.020_b18","doi-asserted-by":"crossref","first-page":"2088","DOI":"10.1109\/TIE.2013.2262760","article-title":"3-D object retrieval with hausdorff distance learning","volume":"61","author":"Gao","year":"2013","journal-title":"IEEE Trans Ind Electron"},{"issue":"1","key":"10.1016\/j.cag.2022.07.020_b19","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.patcog.2006.04.034","article-title":"A new 3D model retrieval approach based on the elevation descriptor","volume":"40","author":"Shih","year":"2007","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.cag.2022.07.020_b20","series-title":"Open3D: A modern library for 3D data processing","author":"Zhou","year":"2018"},{"key":"10.1016\/j.cag.2022.07.020_b21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cag.2021.07.010","article-title":"SHREC 2021: Retrieval of cultural heritage objects","volume":"100","author":"Sipiran","year":"2021","journal-title":"Comput Graph"},{"key":"10.1016\/j.cag.2022.07.020_b22","series-title":"International conference on machine learning","first-page":"6028","article-title":"Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation","author":"Liang","year":"2020"},{"key":"10.1016\/j.cag.2022.07.020_b23","doi-asserted-by":"crossref","unstructured":"He X, Zhou Y, Zhou Z, Bai S, Bai X. Triplet-center loss for multi-view 3d object retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018, pp. 1945\u201354.","DOI":"10.1109\/CVPR.2018.00208"},{"key":"10.1016\/j.cag.2022.07.020_b24","article-title":"Weight normalization: A simple reparameterization to accelerate training of deep neural networks","volume":"29","author":"Salimans","year":"2016","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.cag.2022.07.020_b25","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.neunet.2018.09.001","article-title":"Dgcnn: A convolutional neural network over large-scale labeled graphs","volume":"108","author":"Phan","year":"2018","journal-title":"Neural Netw"},{"key":"10.1016\/j.cag.2022.07.020_b26","series-title":"Query2label: A simple transformer way to multi-label classification","author":"Liu","year":"2021"},{"key":"10.1016\/j.cag.2022.07.020_b27","doi-asserted-by":"crossref","unstructured":"Feng Y, You H, Zhang Z, Ji R, Gao Y. Hypergraph neural networks. In: Proceedings of the AAAI conference on artificial intelligence, Vol. 33; 2019, pp. 3558\u201365.","DOI":"10.1609\/aaai.v33i01.33013558"},{"key":"10.1016\/j.cag.2022.07.020_b28","doi-asserted-by":"crossref","unstructured":"Khrulkov V, Mirvakhabova L, Ustinova E, Oseledets I, Lempitsky V. Hyperbolic image embeddings. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition; 2020, pp. 6418\u201328.","DOI":"10.1109\/CVPR42600.2020.00645"},{"key":"10.1016\/j.cag.2022.07.020_b29","article-title":"Hyperbolic graph convolutional neural networks","volume":"32","author":"Chami","year":"2019"}],"container-title":["Computers & Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849322001443?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849322001443?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,21]],"date-time":"2024-03-21T05:45:26Z","timestamp":1710999926000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0097849322001443"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":29,"alternative-id":["S0097849322001443"],"URL":"https:\/\/doi.org\/10.1016\/j.cag.2022.07.020","relation":{},"ISSN":["0097-8493"],"issn-type":[{"value":"0097-8493","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SHREC\u201922 track: Open-Set 3D Object Retrieval","name":"articletitle","label":"Article Title"},{"value":"Computers & Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cag.2022.07.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}