{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T15:31:39Z","timestamp":1720452699290},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61991412","62176096"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Graphics"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.cag.2022.06.014","type":"journal-article","created":{"date-parts":[[2022,7,5]],"date-time":"2022-07-05T11:06:26Z","timestamp":1657019186000},"page":"1-9","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Sparse prior guided deep multi-view stereo"],"prefix":"10.1016","volume":"107","author":[{"given":"Yuhang","family":"Qi","sequence":"first","affiliation":[]},{"given":"Wanjuan","family":"Su","sequence":"additional","affiliation":[]},{"given":"Qingshan","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Wenbing","family":"Tao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1\u20132","key":"10.1016\/j.cag.2022.06.014_b1","first-page":"1","article-title":"Multi-view stereo: A tutorial","volume":"9","author":"Furukawa","year":"2015","journal-title":"Found Trends\u00ae Comput Graph Vis"},{"key":"10.1016\/j.cag.2022.06.014_b2","doi-asserted-by":"crossref","unstructured":"Schonberger\u00a0JL, Frahm\u00a0J-M. Structure-from-motion revisited. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2016, p. 4104\u201313.","DOI":"10.1109\/CVPR.2016.445"},{"key":"10.1016\/j.cag.2022.06.014_b3","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.ins.2018.11.055","article-title":"A center-driven image set partition algorithm for efficient structure from motion","volume":"479","author":"Sun","year":"2019","journal-title":"Inform Sci"},{"issue":"5","key":"10.1016\/j.cag.2022.06.014_b4","doi-asserted-by":"crossref","first-page":"1901","DOI":"10.1109\/TIP.2013.2237921","article-title":"Accurate multiple view 3d reconstruction using patch-based stereo for large-scale scenes","volume":"22","author":"Shen","year":"2013","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.cag.2022.06.014_b5","doi-asserted-by":"crossref","unstructured":"Zheng\u00a0E, Dunn\u00a0E, Jojic\u00a0V, Frahm\u00a0J-M. Patchmatch based joint view selection and depthmap estimation. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2014, p. 1510\u20137.","DOI":"10.1109\/CVPR.2014.196"},{"key":"10.1016\/j.cag.2022.06.014_b6","doi-asserted-by":"crossref","unstructured":"Galliani\u00a0S, Lasinger\u00a0K, Schindler\u00a0K. Massively parallel multiview stereopsis by surface normal diffusion. In: Proceedings of the IEEE International conference on computer vision. 2015, p. 873\u201381.","DOI":"10.1109\/ICCV.2015.106"},{"key":"10.1016\/j.cag.2022.06.014_b7","series-title":"Proceedings of the European conference on computer vision","first-page":"501","article-title":"Pixelwise view selection for unstructured multi-view stereo","author":"Sch\u00f6nberger","year":"2016"},{"key":"10.1016\/j.cag.2022.06.014_b8","doi-asserted-by":"crossref","unstructured":"Xu\u00a0Q, Tao\u00a0W. Multi-scale geometric consistency guided multi-view stereo. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2019, p. 5483\u201392.","DOI":"10.1109\/CVPR.2019.00563"},{"key":"10.1016\/j.cag.2022.06.014_b9","doi-asserted-by":"crossref","unstructured":"Yao\u00a0Y, Luo\u00a0Z, Li\u00a0S, Fang\u00a0T, Quan\u00a0L. Mvsnet: Depth inference for unstructured multi-view stereo. In: Proceedings of the European conference on computer vision. 2018, p. 767\u201383.","DOI":"10.1007\/978-3-030-01237-3_47"},{"key":"10.1016\/j.cag.2022.06.014_b10","doi-asserted-by":"crossref","unstructured":"Yao\u00a0Y, Luo\u00a0Z, Li\u00a0S, Shen\u00a0T, Fang\u00a0T, Quan\u00a0L. Recurrent mvsnet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2019, p. 5525\u201334.","DOI":"10.1109\/CVPR.2019.00567"},{"key":"10.1016\/j.cag.2022.06.014_b11","doi-asserted-by":"crossref","unstructured":"Xu\u00a0Q, Tao\u00a0W. Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume. In: Proceedings of the AAAI Conference on artificial intelligence. 2020, p. 12508\u201315,","DOI":"10.1609\/aaai.v34i07.6939"},{"key":"10.1016\/j.cag.2022.06.014_b12","doi-asserted-by":"crossref","unstructured":"Xue\u00a0Y, Chen\u00a0J, Wan\u00a0W, Huang\u00a0Y, Yu\u00a0C, Li\u00a0T, et al. Mvscrf: Learning multi-view stereo with conditional random fields. In: Proceedings of the IEEE international conference on computer vision. 2019, p. 4312\u201321.","DOI":"10.1109\/ICCV.2019.00441"},{"key":"10.1016\/j.cag.2022.06.014_b13","doi-asserted-by":"crossref","unstructured":"Luo\u00a0K, Guan\u00a0T, Ju\u00a0L, Huang\u00a0H, Luo\u00a0Y. P-mvsnet: Learning patch-wise matching confidence aggregation for multi-view stereo. In: Proceedings of the IEEE International conference on computer vision. 2019, p. 10452\u201361.","DOI":"10.1109\/ICCV.2019.01055"},{"key":"10.1016\/j.cag.2022.06.014_b14","doi-asserted-by":"crossref","unstructured":"Chen\u00a0R, Han\u00a0S, Xu\u00a0J, Su\u00a0H. Point-based multi-view stereo network. In: Proceedings of the IEEE International conference on computer vision. 2019, p. 1538\u201347.","DOI":"10.1109\/ICCV.2019.00162"},{"key":"10.1016\/j.cag.2022.06.014_b15","doi-asserted-by":"crossref","unstructured":"Gu\u00a0X, Fan\u00a0Z, Zhu\u00a0S, Dai\u00a0Z, Tan\u00a0F, Tan\u00a0P. Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2020, p. 2495\u2013504.","DOI":"10.1109\/CVPR42600.2020.00257"},{"key":"10.1016\/j.cag.2022.06.014_b16","doi-asserted-by":"crossref","unstructured":"Cheng\u00a0S, Xu\u00a0Z, Zhu\u00a0S, Li\u00a0Z, Li\u00a0LE, Ramamoorthi\u00a0R, et al. Deep stereo using adaptive thin volume representation with uncertainty awareness. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2020, p. 2524\u201334.","DOI":"10.1109\/CVPR42600.2020.00260"},{"key":"10.1016\/j.cag.2022.06.014_b17","doi-asserted-by":"crossref","unstructured":"Yang\u00a0J, Mao\u00a0W, Alvarez\u00a0JM, Liu\u00a0M. Cost Volume Pyramid Based Depth Inference for Multi-View Stereo. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2020, p. 4877\u201386.","DOI":"10.1109\/CVPR42600.2020.00493"},{"key":"10.1016\/j.cag.2022.06.014_b18","series-title":"PVSNet: Pixelwise visibility-aware multi-view stereo network","author":"Xu","year":"2020"},{"key":"10.1016\/j.cag.2022.06.014_b19","unstructured":"Zhang\u00a0J, Yao\u00a0Y, Li\u00a0S, Luo\u00a0Z, Fang\u00a0T. Visibility-aware Multi-view Stereo Network. In: Proceedings of the British machine vision conference. 2020."},{"key":"10.1016\/j.cag.2022.06.014_b20","doi-asserted-by":"crossref","unstructured":"Wang\u00a0F, Galliani\u00a0S, Vogel\u00a0C, Speciale\u00a0P, Pollefeys\u00a0M. PatchmatchNet: Learned Multi-View Patchmatch Stereo. In: Proceedings of the IEEE\/CVF Conference on computer vision and pattern recognition. 2021, p. 14194\u2013203.","DOI":"10.1109\/CVPR46437.2021.01397"},{"issue":"3","key":"10.1016\/j.cag.2022.06.014_b21","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1109\/TPAMI.2005.44","article-title":"A quasi-dense approach to surface reconstruction from uncalibrated images","volume":"27","author":"Lhuillier","year":"2005","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"8","key":"10.1016\/j.cag.2022.06.014_b22","doi-asserted-by":"crossref","first-page":"1362","DOI":"10.1109\/TPAMI.2009.161","article-title":"Accurate, dense, and robust multiview stereopsis","volume":"32","author":"Furukawa","year":"2009","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.cag.2022.06.014_b23","doi-asserted-by":"crossref","unstructured":"Hane\u00a0C, Zach\u00a0C, Cohen\u00a0A, Angst\u00a0R, Pollefeys\u00a0M. Joint 3D scene reconstruction and class segmentation. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2013, p. 97\u2013104.","DOI":"10.1109\/CVPR.2013.20"},{"key":"10.1016\/j.cag.2022.06.014_b24","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.cag.2015.09.003","article-title":"MVE\u2014An image-based reconstruction environment","volume":"53","author":"Fuhrmann","year":"2015","journal-title":"Comput Graph"},{"key":"10.1016\/j.cag.2022.06.014_b25","doi-asserted-by":"crossref","unstructured":"Bleyer\u00a0M, Rhemann\u00a0C, Rother\u00a0C. Patchmatch stereo-stereo matching with slanted support windows. In: Bmvc. 11, 2011, p. 1\u201311.","DOI":"10.5244\/C.25.14"},{"key":"10.1016\/j.cag.2022.06.014_b26","series-title":"2009 IEEE Conference on computer vision and pattern recognition","first-page":"1422","article-title":"Manhattan-world stereo","author":"Furukawa","year":"2009"},{"key":"10.1016\/j.cag.2022.06.014_b27","doi-asserted-by":"crossref","unstructured":"Xu\u00a0Q, Tao\u00a0W. Planar prior assisted patchmatch multi-view stereo. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34. (07):2020, p. 12516\u201323.","DOI":"10.1609\/aaai.v34i07.6940"},{"key":"10.1016\/j.cag.2022.06.014_b28","doi-asserted-by":"crossref","unstructured":"Zbontar\u00a0J, LeCun\u00a0Y. Computing the stereo matching cost with a convolutional neural network. In: Proceedings of the IEEE Conference on computer vision and pattern recognition. 2015, p. 1592\u20139.","DOI":"10.1109\/CVPR.2015.7298767"},{"key":"10.1016\/j.cag.2022.06.014_b29","doi-asserted-by":"crossref","unstructured":"Hartmann\u00a0W, Galliani\u00a0S, Havlena\u00a0M, Van\u00a0Gool\u00a0L, Schindler\u00a0K. Learned multi-patch similarity. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 1586\u201394.","DOI":"10.1109\/ICCV.2017.176"},{"key":"10.1016\/j.cag.2022.06.014_b30","doi-asserted-by":"crossref","unstructured":"Ji\u00a0M, Gall\u00a0J, Zheng\u00a0H, Liu\u00a0Y, Fang\u00a0L. Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 2307\u201315.","DOI":"10.1109\/ICCV.2017.253"},{"key":"10.1016\/j.cag.2022.06.014_b31","article-title":"Learning a multi-view stereo machine","volume":"30","author":"Kar","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.cag.2022.06.014_b32","doi-asserted-by":"crossref","unstructured":"Xu\u00a0H, Zhang\u00a0J. AANet: Adaptive Aggregation Network for Efficient Stereo Matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2020.","DOI":"10.1109\/CVPR42600.2020.00203"},{"key":"10.1016\/j.cag.2022.06.014_b33","series-title":"Proceedings CVPR IEEE Computer society conference on computer vision and pattern recognition","first-page":"358","article-title":"A space-sweep approach to true multi-image matching","author":"Collins","year":"1996"},{"key":"10.1016\/j.cag.2022.06.014_b34","series-title":"Multiple view geometry in computer vision","author":"Hartley","year":"2003"},{"key":"10.1016\/j.cag.2022.06.014_b35","doi-asserted-by":"crossref","unstructured":"Dai\u00a0J, Qi\u00a0H, Xiong\u00a0Y, Li\u00a0Y, Zhang\u00a0G, Hu\u00a0H, et al. Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 764\u201373.","DOI":"10.1109\/ICCV.2017.89"},{"key":"10.1016\/j.cag.2022.06.014_b36","doi-asserted-by":"crossref","unstructured":"Zhu\u00a0X, Hu\u00a0H, Lin\u00a0S, Dai\u00a0J. Deformable convnets v2: More deformable, better results. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2019, p. 9308\u201316.","DOI":"10.1109\/CVPR.2019.00953"},{"key":"10.1016\/j.cag.2022.06.014_b37","doi-asserted-by":"crossref","unstructured":"Wei\u00a0Z, Zhu\u00a0Q, Min\u00a0C, Chen\u00a0Y, Wang\u00a0G. Aa-rmvsnet: Adaptive aggregation recurrent multi-view stereo network. In: Proceedings of the IEEE\/CVF international conference on computer vision. 2021, p. 6187\u201396.","DOI":"10.1109\/ICCV48922.2021.00613"},{"key":"10.1016\/j.cag.2022.06.014_b38","doi-asserted-by":"crossref","first-page":"1500","DOI":"10.1109\/LSP.2020.3013518","article-title":"Deformable 3d convolution for video super-resolution","volume":"27","author":"Ying","year":"2020","journal-title":"IEEE Signal Process Lett"},{"issue":"2","key":"10.1016\/j.cag.2022.06.014_b39","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s11263-016-0902-9","article-title":"Large-scale data for multiple-view stereopsis","volume":"120","author":"Aan\u00e6s","year":"2016","journal-title":"Int J Comput Vis"},{"issue":"4","key":"10.1016\/j.cag.2022.06.014_b40","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3072959.3073599","article-title":"Tanks and temples: Benchmarking large-scale scene reconstruction","volume":"36","author":"Knapitsch","year":"2017","journal-title":"ACM Trans Graph (ToG)"},{"key":"10.1016\/j.cag.2022.06.014_b41","doi-asserted-by":"crossref","unstructured":"Yao\u00a0Y, Luo\u00a0Z, Li\u00a0S, Zhang\u00a0J, Ren\u00a0Y, Zhou\u00a0L, et al. BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks. In: Proceedings of the IEEE\/CVF Conference on computer vision and pattern recognition. 2020.","DOI":"10.1109\/CVPR42600.2020.00186"},{"key":"10.1016\/j.cag.2022.06.014_b42","series-title":"Proceedings of the European conference on computer vision","first-page":"766","article-title":"Using multiple hypotheses to improve depth-maps for multi-view stereo","author":"Campbell","year":"2008"},{"issue":"5","key":"10.1016\/j.cag.2022.06.014_b43","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1007\/s00138-011-0346-8","article-title":"Efficient large-scale multi-view stereo for ultra high-resolution image sets","volume":"23","author":"Tola","year":"2012","journal-title":"Mach Vis Appl"},{"key":"10.1016\/j.cag.2022.06.014_b44","doi-asserted-by":"crossref","unstructured":"Yan\u00a0J, Wei\u00a0Z, Yi\u00a0H, Ding\u00a0M, Zhang\u00a0R, Chen\u00a0Y, et al. Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency Checking. In: Proceedings of the European conference on computer vision. 2020.","DOI":"10.1007\/978-3-030-58548-8_39"},{"key":"10.1016\/j.cag.2022.06.014_b45","series-title":"Proceedings of the IEEE\/CVF international conference on computer vision","first-page":"5732","article-title":"EPP-MVSNet: Epipolar-assembling based depth prediction for multi-view stereo","author":"Ma","year":"2021"},{"key":"10.1016\/j.cag.2022.06.014_b46","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.cag.2021.04.016","article-title":"Adaptive depth estimation for pyramid multi-view stereo","volume":"97","author":"Liao","year":"2021","journal-title":"Comput Graph"}],"container-title":["Computers & Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849322001157?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849322001157?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,21]],"date-time":"2024-03-21T01:44:59Z","timestamp":1710985499000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0097849322001157"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":46,"alternative-id":["S0097849322001157"],"URL":"https:\/\/doi.org\/10.1016\/j.cag.2022.06.014","relation":{},"ISSN":["0097-8493"],"issn-type":[{"value":"0097-8493","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Sparse prior guided deep multi-view stereo","name":"articletitle","label":"Article Title"},{"value":"Computers & Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cag.2022.06.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}