{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T19:08:10Z","timestamp":1722366490160},"reference-count":124,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,12,1]],"date-time":"2018-12-01T00:00:00Z","timestamp":1543622400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Graphics"],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1016\/j.cag.2018.09.018","type":"journal-article","created":{"date-parts":[[2018,10,3]],"date-time":"2018-10-03T13:22:17Z","timestamp":1538572937000},"page":"30-49","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":37,"special_numbering":"C","title":["A task-and-technique centered survey on visual analytics for deep learning model engineering"],"prefix":"10.1016","volume":"77","author":[{"given":"Rafael","family":"Garcia","sequence":"first","affiliation":[]},{"given":"Alexandru C.","family":"Telea","sequence":"additional","affiliation":[]},{"given":"Bruno","family":"Castro da Silva","sequence":"additional","affiliation":[]},{"given":"Jim","family":"T\u00f8rresen","sequence":"additional","affiliation":[]},{"given":"Jo\u00e3o Luiz","family":"Dihl Comba","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cag.2018.09.018_bib0001","series-title":"Deep learning","author":"Goodfellow","year":"2016"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0002","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1147\/rd.33.0210","article-title":"Some studies in machine learning using the game of checkers","volume":"3","author":"Samuel","year":"1959","journal-title":"IBM J Res Dev"},{"issue":"7553","key":"10.1016\/j.cag.2018.09.018_bib0003","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.cag.2018.09.018_bib0004","series-title":"Proceedings of the international conference on neural information processing systems","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume":"vol. 1","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.cag.2018.09.018_bib0005","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"248","article-title":"ImageNet: a large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.cag.2018.09.018_bib0006","series-title":"Proceedings of the European conference on computer vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.cag.2018.09.018_bib0007","unstructured":"Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRR 2014;abs\/1409.1556. arXiv:1409.1556."},{"key":"10.1016\/j.cag.2018.09.018_bib0008","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.cag.2018.09.018_bib0009","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"165","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0010","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1109\/TVCG.2016.2598831","article-title":"Towards better analysis of deep convolutional neural networks","volume":"23","author":"Liu","year":"2017","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0011","unstructured":"Marcus G. Deep learning: A critical appraisal. CoRR 2018;abs\/1801.00631. arXiv:1801.00631."},{"key":"10.1016\/j.cag.2018.09.018_bib0012","unstructured":"Samek W, Wiegand T, M\u00fcller KR. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. CoRR 2017;abs\/1708.08296. arXiv:1708.08296."},{"key":"10.1016\/j.cag.2018.09.018_bib0013","doi-asserted-by":"crossref","unstructured":"Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD\u201916; ACM. ISBN 978-1-4503-4232-2; 2016, p. 1135\u20131144.","DOI":"10.18653\/v1\/N16-3020"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0014","first-page":"1249","article-title":"Visualizing high-dimensional data: advances in the past decade","volume":"23","author":"Liu","year":"2016","journal-title":"Comput Gr Forum"},{"key":"10.1016\/j.cag.2018.09.018_bib0015","first-page":"66","article-title":"Dimensionality reduction: a comparative review","volume":"10","author":"van der Maaten","year":"2009","journal-title":"Mach Learn Res"},{"key":"10.1016\/j.cag.2018.09.018_bib0016","first-page":"2859","article-title":"Linear dimensionality reduction: Survey, insights, and generalizations","volume":"16","author":"Cunningham","year":"2015","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.cag.2018.09.018_bib0017","unstructured":"Sorzano C, Vargas J, Montano AP. A survey of dimensionality reduction techniques. CoRR 2014;abs\/1403.2877. arXiv:1403.2877."},{"issue":"2","key":"10.1016\/j.cag.2018.09.018_bib0018","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1214\/12-STS406","article-title":"A comparative review of dimension reduction methods in approximate Bayesian computation","volume":"28","author":"Blum","year":"2013","journal-title":"Stat Sci"},{"issue":"4","key":"10.1016\/j.cag.2018.09.018_bib0019","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1177\/1473871617713337","article-title":"Projections as visual aids for classification system design","volume":"17","author":"Rauber","year":"2018","journal-title":"Inf Vis"},{"key":"10.1016\/j.cag.2018.09.018_bib0020","series-title":"Proceedings of the EuroVA","first-page":"67","article-title":"Interactive image feature selection aided by dimensionality reduction","author":"Rauber","year":"2015"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0021","doi-asserted-by":"crossref","first-page":"1614","DOI":"10.1109\/TVCG.2014.2346482","article-title":"INFUSE: interactive feature selection for predictive modeling of high dimensional data","volume":"20","author":"Krause","year":"2014","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0022","doi-asserted-by":"crossref","first-page":"2625","DOI":"10.1109\/TVCG.2013.150","article-title":"Dimension projection matrix\/tree: interactive subspace visual exploration and analysis of high dimensional data","volume":"19","author":"Yuan","year":"2013","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0023","series-title":"Proceedings of the IEEE VAST","first-page":"63","article-title":"Subspace search and visualization to make sense of alternative clusterings in high-dimensional data","author":"Tatu","year":"2012"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0024","doi-asserted-by":"crossref","first-page":"2591","DOI":"10.1109\/TVCG.2011.178","article-title":"Brushing dimensions: a dual visual analysis model for high-dimensional data","volume":"17","author":"Turkay","year":"2011","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0025","unstructured":"Noris B. MLDemos: open source visualization tool for machine learning algorithms. 2017. http:\/\/mldemos.epfl.ch."},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0026","doi-asserted-by":"crossref","first-page":"2042","DOI":"10.1109\/TVCG.2013.157","article-title":"Explainers: expert explorations with crafted projections","volume":"19","author":"Gleicher","year":"2013","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"2","key":"10.1016\/j.cag.2018.09.018_bib0027","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1089\/big.2016.0007","article-title":"A framework for considering comprehensibility in modeling","volume":"4","author":"Gleicher","year":"2016","journal-title":"Big Data"},{"key":"10.1016\/j.cag.2018.09.018_bib0028","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.dsp.2017.10.011","article-title":"Methods for interpreting and understanding deep neural networks","volume":"73","author":"Montavon","year":"2018","journal-title":"Digit Sig Process"},{"issue":"11","key":"10.1016\/j.cag.2018.09.018_bib0029","doi-asserted-by":"crossref","first-page":"2660","DOI":"10.1109\/TNNLS.2016.2599820","article-title":"Evaluating the visualization of what a deep neural network has learned","volume":"28","author":"Samek","year":"2017","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10.1016\/j.cag.2018.09.018_bib0030","series-title":"Proceedings of the International conference on machine learning workshop on visualization for deep learning","article-title":"Effective visualizations for training and evaluating deep models","author":"Yeager","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0031","unstructured":"Zeng H. Towards better understanding of deep learning with visualization. 2016. [M.Sc. thesis], Department of Computer Science and Engineering, Hong-Kong University of Science and Technology."},{"key":"10.1016\/j.cag.2018.09.018_bib0032","series-title":"Transparent data mining for big and small data","first-page":"123","article-title":"Visualizations of deep neural networks in computer vision: A survey","author":"Seifert","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0033","unstructured":"Gr\u00fcn F, Rupprecht C, Navab N, Tombari F. A taxonomy and library for visualizing learned features in convolutional neural networks. CoRR 2016;abs\/1606.07757. arXiv:1606.07757."},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0034","first-page":"48","article-title":"Towards better analysis of machine learning models: a visual analytics perspective","volume":"1","author":"Liu","year":"2017","journal-title":"Vis Inf"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0035","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1111\/cgf.13210","article-title":"The state-of-the-art in predictive visual analytics","volume":"36","author":"Lu","year":"2017","journal-title":"Comput Gr Forum"},{"issue":"4","key":"10.1016\/j.cag.2018.09.018_bib0036","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1609\/aimag.v35i4.2513","article-title":"Power to the people: the role of humans in interactive machine learning","volume":"35","author":"Amershi","year":"2014","journal-title":"AI Mag"},{"key":"10.1016\/j.cag.2018.09.018_bib0037","series-title":"Proceedings of the designing the user experience of machine learning systems (AAAI Spring Symposium Series)","article-title":"Interactive machine learning for end-user innovation","author":"Bernardo","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0038","series-title":"Proceedings of the European symposium on artificial neural networks, computational intelligence and machine learning","article-title":"Human-centered machine learning through interactive visualization","author":"Sacha","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0039","unstructured":"Lipton Z. The mythos of model interpretability. CoRR 2016;abs\/1606.03490. arXiv:1606.03490."},{"key":"10.1016\/j.cag.2018.09.018_bib0040","unstructured":"Hohman F, Kahng M, Pienta R, Chau DH. Visual analytics in deep learning: An interrogative survey for the next frontiers. CoRR 2018;abs\/1801.06889. arXiv:1801.06889."},{"key":"10.1016\/j.cag.2018.09.018_bib0041","series-title":"Machine learning: a probabilistic perspective","author":"Murphy","year":"2012"},{"key":"10.1016\/j.cag.2018.09.018_bib0042","series-title":"Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York","author":"Bishop","year":"2006"},{"key":"10.1016\/j.cag.2018.09.018_bib0043","series-title":"The elements of statistical learning: data mining, inference, and prediction","author":"Hastie","year":"2009"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0044","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach Learn"},{"issue":"4","key":"10.1016\/j.cag.2018.09.018_bib0045","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"LeCun","year":"1989","journal-title":"Neural Comput"},{"issue":"2","key":"10.1016\/j.cag.2018.09.018_bib0046","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","article-title":"Finding structure in time","volume":"14","author":"Elman","year":"1990","journal-title":"Cognit Sci"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0047","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3348\/kjr.2004.5.1.11","article-title":"Receiver operating characteristic (ROC) curve: practical review for radiologists","volume":"5","author":"Park","year":"2004","journal-title":"Korean J Radiol"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0048","first-page":"37","article-title":"Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation","volume":"2","author":"Powers","year":"2011","journal-title":"J Mach Learn Technol"},{"issue":"8","key":"10.1016\/j.cag.2018.09.018_bib0049","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","article-title":"An introduction to ROC analysis","volume":"27","author":"Fawcett","year":"2006","journal-title":"Pattern Recognit Lett"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0050","doi-asserted-by":"crossref","first-page":"2376","DOI":"10.1109\/TVCG.2013.124","article-title":"A multi-level typology of abstract visualization tasks","volume":"19","author":"Brehmer","year":"2013","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0051","series-title":"Technical Report 1341","article-title":"Visualizing higher-layer features of a deep network","author":"Erhan","year":"2009"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0052","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1109\/TVCG.2016.2598838","article-title":"Visualizing the hidden activity of artificial neural networks","volume":"23","author":"Rauber","year":"2017","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"5","key":"10.1016\/j.cag.2018.09.018_bib0053","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/MCG.2004.39","article-title":"Visual analytics","volume":"24","author":"Wong","year":"2004","journal-title":"IEEE Comput Gr Appl"},{"key":"10.1016\/j.cag.2018.09.018_bib0054","series-title":"Lecture notes in computer science (LNCS 4404)","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1007\/978-3-540-71080-6_6","article-title":"Visual analytics: scope and challenges","author":"Keim","year":"2008"},{"issue":"2","key":"10.1016\/j.cag.2018.09.018_bib0055","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1007\/s11704-016-6028-y","article-title":"Recent progress and trends in predictive visual analytics","volume":"11","author":"Lu","year":"2017","journal-title":"Front Comput Sci"},{"key":"10.1016\/j.cag.2018.09.018_bib0056","series-title":"Proceedings of the international conference on intelligence analysis","article-title":"The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis","author":"Pirolli","year":"2005"},{"key":"10.1016\/j.cag.2018.09.018_bib0057","series-title":"Information visualization \u2013 human-centered issues and perspectives","first-page":"154","article-title":"Visual analytics: definition, process, and challenges","author":"Keim","year":"2008"},{"key":"10.1016\/j.cag.2018.09.018_bib0058","series-title":"Mastering the information age: solving problems with visual analytics","author":"Keim","year":"2010"},{"key":"10.1016\/j.cag.2018.09.018_bib0059","unstructured":"IEEE VAST 2017 Symposium. 2017. http:\/\/ieeevis.org\/year\/2017\/info\/papers."},{"key":"10.1016\/j.cag.2018.09.018_bib0060","series-title":"Proceedings of the SPIE visual data exploration and analysis","first-page":"1","article-title":"NVIS: an interactive visualization tool for neural networks","volume":"vol. 4302","author":"Streeter","year":"2001"},{"key":"10.1016\/j.cag.2018.09.018_bib0061","series-title":"Proceedings of the IEEE visualization","first-page":"383","article-title":"Opening the black box \u2013 data driven visualization of neural networks","author":"Tzeng","year":"2005"},{"key":"10.1016\/j.cag.2018.09.018_bib0062","series-title":"Proceedings of the international conference on neural information processing systems. NIPS\u201993","first-page":"3","article-title":"Autoencoders, minimum description length and Helmholtz free energy","author":"Hinton","year":"1993"},{"key":"10.1016\/j.cag.2018.09.018_bib0063","series-title":"Advances in neural information processing systems","first-page":"2672","article-title":"Generative adversarial nets","volume":"vol. 27","author":"Goodfellow","year":"2014"},{"issue":"7","key":"10.1016\/j.cag.2018.09.018_bib0064","doi-asserted-by":"crossref","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Comput"},{"key":"10.1016\/j.cag.2018.09.018_bib0065","doi-asserted-by":"crossref","first-page":"7540","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"Mnih","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.cag.2018.09.018_bib0066","series-title":"Deep learning","author":"Gibson","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0067","series-title":"Proceedings of the international conference on machine learning","first-page":"1899","article-title":"Graying the black box: Understanding DQNS","author":"Zahavy","year":"2016"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0068","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1109\/TVCG.2017.2744938","article-title":"Analyzing the training processes of deep generative models","volume":"24","author":"Liu","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0069","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/TVCG.2016.2598828","article-title":"Squares: supporting interactive performance analysis for multiclass classifiers","volume":"23","author":"Ren","year":"2017","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0070","doi-asserted-by":"crossref","first-page":"1962","DOI":"10.1109\/TVCG.2013.125","article-title":"A partition-based framework for building and validating regression models","volume":"19","author":"M\u00fchlbacher","year":"2013","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0071","series-title":"Proceedings of the IEEE visual analytics science and technology (VAST)","article-title":"Understanding hidden memories of recurrent neural networks","author":"Ming","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0072","series-title":"Proceedings of the workshop on visual analytics for data learning (VADL)","article-title":"CNNComparator: comparative analytics of convolutional neural networks","author":"Zeng","year":"2017"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0073","doi-asserted-by":"crossref","first-page":"2161","DOI":"10.1109\/TVCG.2014.2346321","article-title":"Visual parameter space analysis: a conceptual framework","volume":"20","author":"Sedlmair","year":"2014","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0074","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1109\/TVCG.2017.2744718","article-title":"Activis: visual exploration of industry-scale deep neural network models","volume":"24","author":"Kahng","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0075","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TVCG.2017.2744878","article-title":"Visualizing dataflow graphs of deep learning models in tensorflow","volume":"24","author":"Wongsuphasawat","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0076","unstructured":"Smilkov D, Carter S, Sculley D, Vigas FB, Wattenberg M. Direct-manipulation visualization of deep networks. CoRR 2017;abs\/1708.03788. arXiv:1708.03788."},{"key":"10.1016\/j.cag.2018.09.018_bib0077","series-title":"Proceedings of the ACM SIGKDD workshop on interactive data exploration and analytics (IDEA)","article-title":"RevaCNN: Real-Time visual analytics for convolutional neural network","author":"Chung","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0078","series-title":"Proceedings of the international symposium on advances in visual computing (ISVC)","first-page":"867","article-title":"An interactive node-link visualization of convolutional neural networks","author":"Harley","year":"2015"},{"key":"10.1016\/j.cag.2018.09.018_bib0079","series-title":"BIDViz: real-time monitoring and debugging of machine learning training processes","author":"Qi","year":"2017"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0080","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1109\/TVCG.2017.2744358","article-title":"DeepEyes: progressive visual analytics for designing deep neural networks","volume":"24","author":"Pezzotti","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0081","series-title":"Proceedings of the international conference on machine learning workshop on visualization for deep learning","article-title":"Evolutionary visual analysis of deep neural networks","author":"Zhong","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0082","doi-asserted-by":"crossref","unstructured":"Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: ICCV. 2017, p. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"10.1016\/j.cag.2018.09.018_bib0083","series-title":"Proceedings of the workshop on visualization for deep learning (VADL)","article-title":"RNNbow: visualizing learning via backpropagation gradients in recurrent neural networks","author":"Cashman","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_sbref0071","series-title":"Proceedings of the international conference on machine learning workshop on deep learning","article-title":"Understanding neural networks through deep visualization","author":"Yosinski","year":"2015"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0085","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1109\/TVCG.2017.2744683","article-title":"Do convolutional neural networks learn class hierarchy?","volume":"24","author":"Alsallakh","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0086","series-title":"Proceedings of the international conference on neural information processing systems","first-page":"3395","article-title":"Synthesizing the preferred inputs for neurons in neural networks via deep generator networks","author":"Nguyen","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0087","unstructured":"Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. CoRR 2016;abs\/1602.03616. arXiv:1602.03616."},{"key":"10.1016\/j.cag.2018.09.018_bib0088","series-title":"Proceedings of the IEEE international conference on computer vision (ICCV)","article-title":"Understanding deep features with computer-generated imagery","author":"Aubry","year":"2015"},{"key":"10.1016\/j.cag.2018.09.018_bib0089","unstructured":"Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR 2013;abs\/1312.6034. arXiv:1312.6034."},{"key":"10.1016\/j.cag.2018.09.018_bib0090","unstructured":"Wei D, Zhou B, Torrabla A, Freeman W. Understanding intra-class knowledge inside CNN. CoRR 2015;abs\/1507.02379. arXiv:1507.02379."},{"key":"10.1016\/j.cag.2018.09.018_bib0091","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"Understanding deep image representations by inverting them","author":"Mahendran","year":"2015"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0092","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1007\/s11263-016-0911-8","article-title":"Visualizing deep convolutional neural networks using natural pre-images","volume":"120","author":"Mahendran","year":"2016","journal-title":"Int J Comput Vis"},{"key":"10.1016\/j.cag.2018.09.018_bib0093","unstructured":"Zintgraf LM, Cohen TS, Welling M. A new method to visualize deep neural networks. CoRR 2016;abs\/1603.02518. arXiv:1603.02518."},{"key":"10.1016\/j.cag.2018.09.018_bib0094","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"Inverting visual representations with convolutional networks","author":"Dosovitskiy","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0095","unstructured":"Zintgraf LM, Cohen TS, Adel T, Welling M. Visualizing deep neural network decisions: Prediction difference analysis. CoRR 2017;abs\/1702.04595. arXiv:1702.04595."},{"key":"10.1016\/j.cag.2018.09.018_bib0096","unstructured":"Li H, Mueller K, Chen X. Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation. CoRR 2017;abs\/1712.08268. arXiv:1712.08268."},{"key":"10.1016\/j.cag.2018.09.018_bib0097","unstructured":"Bojarski M, Choromanska A, Choromanski K, Firner B, Jackel L, M\u00fcller U, et al. VisualBackProp: Efficient visualization of CNNs. CoRR 2016;abs\/1611.05418. arXiv:1611.05418."},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0098","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1109\/TVCG.2017.2744158","article-title":"LSTMVis: a tool for visual analysis of hidden state dynamics in recurrent neural networks","volume":"24","author":"Strobelt","year":"2018","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0099","doi-asserted-by":"crossref","unstructured":"Li J, Chen X, Hovy E, Jurafsky D. Visualizing and understanding neural models in NLP. CoRR 2015;abs\/1506.01066. arXiv:1506.01066.","DOI":"10.18653\/v1\/N16-1082"},{"key":"10.1016\/j.cag.2018.09.018_bib0100","series-title":"Proceedings of the international conference on machine learning workshop on visualization for deep learning","article-title":"Visual tools for debugging neural language models","author":"Rong","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0101","series-title":"Proceedings of the annual meeting of the association for computational linguistics (Volume 1: Long Papers)","first-page":"1150","article-title":"Visualizing and understanding neural machine translation","volume":"vol. 1","author":"Ding","year":"2017"},{"key":"10.1016\/j.cag.2018.09.018_bib0102","unstructured":"Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent networks. CoRR 2015;abs\/1506.02078. arXiv:1506.02078."},{"key":"10.1016\/j.cag.2018.09.018_bib0103","series-title":"Software visualization: visualizing the structure, behaviour, and evolution of software","author":"Diehl","year":"2007"},{"issue":"12","key":"10.1016\/j.cag.2018.09.018_bib0104","doi-asserted-by":"crossref","first-page":"2250","DOI":"10.1109\/TVCG.2016.2515611","article-title":"CUBu: universal real-time bundling for large graphs","volume":"22","author":"van der Zwan","year":"2016","journal-title":"IEEE Trans Vis Comput Gr"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0105","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1111\/cgf.13213","article-title":"State of the art in edge and trail bundling techniques","volume":"36","author":"Lhuillier","year":"2017","journal-title":"Comput Gr Forum"},{"key":"10.1016\/j.cag.2018.09.018_bib0106","doi-asserted-by":"crossref","unstructured":"Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A survey. CoRR 2018;abs\/1801.07883. arXiv:1801.07883.","DOI":"10.1002\/widm.1253"},{"issue":"5","key":"10.1016\/j.cag.2018.09.018_bib0107","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/MIS.2015.69","article-title":"Deep neural networks in machine translation: an overview","volume":"30","author":"Zhang","year":"2015","journal-title":"IEEE Intell Syst"},{"key":"10.1016\/j.cag.2018.09.018_bib0108","series-title":"Gradient flow in recurrent nets: the difficulty of learning long-term dependencies","first-page":"464","author":"Hochreiter","year":"2001"},{"issue":"Nov","key":"10.1016\/j.cag.2018.09.018_bib0109","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.cag.2018.09.018_bib0110","series-title":"Metric evolution maps: Multidimensional attribute-driven exploration of software repositories. In: VMV","author":"da Silva","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0111","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","article-title":"Deep neural networks are easily fooled: High confidence predictions for unrecognizable images","author":"Nguyen","year":"2015"},{"key":"10.1016\/j.cag.2018.09.018_bib0112","series-title":"Proceedings of the neural information processing systems","first-page":"5","article-title":"Reading digits in natural images with unsupervised feature learning","author":"Netzer","year":"2011"},{"issue":"1","key":"10.1016\/j.cag.2018.09.018_bib0113","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1109\/TVCG.2016.2598495","article-title":"Visual interaction with dimensionality reduction: a structured literature analysis","volume":"23","author":"Sacha","year":"2017","journal-title":"IEEE Trans Vis Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0114","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0130140","article-title":"On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation","volume":"10","author":"Bach","year":"2015","journal-title":"PLOS One"},{"key":"10.1016\/j.cag.2018.09.018_bib0115","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.patcog.2016.11.008","article-title":"Explaining nonlinear classification decisions with deep Taylor decomposition","volume":"65","author":"Montavon","year":"2017","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.cag.2018.09.018_bib0116","series-title":"Advances in neural information processing systems","first-page":"658","article-title":"Generating images with perceptual similarity metrics based on deep networks","volume":"vol. 29","author":"Dosovitskiy","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0117","unstructured":"Brochu E, Cora VM, De Freitas, N. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR 2010;abs\/1012.2599. arXiv:1012.2599."},{"key":"10.1016\/j.cag.2018.09.018_bib0118","series-title":"Advances in neural information processing systems","article-title":"Practical Bayesian optimization of machine learning algorithms","volume":"vol. 25","author":"Snoek","year":"2012"},{"key":"10.1016\/j.cag.2018.09.018_bib0119","series-title":"Proceedings of the international conference on machine learning","article-title":"Scalable Bayesian optimization using deep neural networks","author":"Snoek","year":"2015"},{"key":"10.1016\/j.cag.2018.09.018_bib0120","doi-asserted-by":"crossref","unstructured":"Wattenberg M. How to use t-SNE effectively. 2017. https:\/\/distill.pub\/2016\/misread-tsne.","DOI":"10.23915\/distill.00002"},{"key":"10.1016\/j.cag.2018.09.018_bib0121","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.cag.2014.01.006","article-title":"Visual analysis of dimensionality reduction quality for parameterized projections","volume":"41","author":"Martins","year":"2014","journal-title":"Comput Gr"},{"key":"10.1016\/j.cag.2018.09.018_bib0122","series-title":"Proceedings of the EuroVis \u2013 short papers","first-page":"137","article-title":"Visualizing time-dependent data using dynamic t-SNE","author":"Rauber","year":"2016"},{"key":"10.1016\/j.cag.2018.09.018_bib0123","doi-asserted-by":"crossref","unstructured":"McInnes L, Healy J. Umap: Uniform manifold approximation and projection for dimension reduction. CoRR 2018;abs\/1802.03426. arXiv:1802.03426.","DOI":"10.21105\/joss.00861"},{"issue":"3","key":"10.1016\/j.cag.2018.09.018_bib0124","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1111\/cgf.12878","article-title":"Hierarchical stochastic neighbor embedding","volume":"35","author":"Pezzotti","year":"2016","journal-title":"Comput Gr Forum"}],"container-title":["Computers & Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849318301535?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0097849318301535?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,25]],"date-time":"2019-10-25T04:59:29Z","timestamp":1571979569000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0097849318301535"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12]]},"references-count":124,"alternative-id":["S0097849318301535"],"URL":"https:\/\/doi.org\/10.1016\/j.cag.2018.09.018","relation":{},"ISSN":["0097-8493"],"issn-type":[{"value":"0097-8493","type":"print"}],"subject":[],"published":{"date-parts":[[2018,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A task-and-technique centered survey on visual analytics for deep learning model engineering","name":"articletitle","label":"Article Title"},{"value":"Computers & Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cag.2018.09.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}