{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:42:21Z","timestamp":1740116541299,"version":"3.37.3"},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFB1004904"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["30918012203"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer-Aided Design"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.cad.2022.103275","type":"journal-article","created":{"date-parts":[[2022,4,28]],"date-time":"2022-04-28T14:56:32Z","timestamp":1651157792000},"page":"103275","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Structure-Aware Denoising for Real-world Noisy Point Clouds with Complex Structures"],"prefix":"10.1016","volume":"149","author":[{"given":"Guoxing","family":"Sun","sequence":"first","affiliation":[]},{"given":"Chao","family":"Chu","sequence":"additional","affiliation":[]},{"given":"Jialin","family":"Mei","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1929-3654","authenticated-orcid":false,"given":"Weiqing","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9483-5268","authenticated-orcid":false,"given":"Zhiyong","family":"Su","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.cad.2022.103275_b1","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1007\/s00366-017-0556-4","article-title":"Denoising of point cloud data for computer-aided design, engineering, and manufacturing","volume":"34","author":"Chen","year":"2018","journal-title":"Eng Comput"},{"issue":"2","key":"10.1016\/j.cad.2022.103275_b2","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0890-6955(01)00120-1","article-title":"A new segmentation method for point cloud data","volume":"42","author":"Woo","year":"2002","journal-title":"Int J Mach Tools Manuf"},{"key":"10.1016\/j.cad.2022.103275_b3","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"4558","article-title":"Large-scale point cloud semantic segmentation with superpoint graphs","author":"Landrieu","year":"2018"},{"key":"10.1016\/j.cad.2022.103275_b4","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"863","article-title":"Escape from cells: Deep kd-networks for the recognition of 3D point cloud models","author":"Klokov","year":"2017"},{"key":"10.1016\/j.cad.2022.103275_b5","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"4606","article-title":"Attentional shapecontextnet for point cloud recognition","author":"Xie","year":"2018"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2487228.2487237","article-title":"Screened poisson surface reconstruction","volume":"32","author":"Kazhdan","year":"2013","journal-title":"ACM Trans Graph"},{"issue":"1","key":"10.1016\/j.cad.2022.103275_b7","doi-asserted-by":"crossref","first-page":"36","DOI":"10.3390\/rs8010036","article-title":"An improved method for power-line reconstruction from point cloud data","volume":"8","author":"Guo","year":"2016","journal-title":"Remote Sens"},{"key":"10.1016\/j.cad.2022.103275_b8","doi-asserted-by":"crossref","unstructured":"Lin C-H, Kong C, Lucey S. Learning efficient point cloud generation for dense 3D object reconstruction. In: Proceedings of the AAAI conference on artificial intelligence. 2018. p. 7114\u201321.","DOI":"10.1609\/aaai.v32i1.12278"},{"issue":"1","key":"10.1016\/j.cad.2022.103275_b9","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/cgf.12802","article-title":"A survey of surface reconstruction from point clouds","volume":"36","author":"Berger","year":"2017","journal-title":"Comput Graph Forum"},{"key":"10.1016\/j.cad.2022.103275_b10","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.image.2017.05.009","article-title":"A review of algorithms for filtering the 3D point cloud","volume":"57","author":"Han","year":"2017","journal-title":"Signal Process, Image Commun"},{"issue":"1","key":"10.1016\/j.cad.2022.103275_b11","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1111\/cgf.13753","article-title":"PointCleanNet: Learning to denoise and remove outliers from dense point clouds","volume":"39","author":"Rakotosaona","year":"2020","journal-title":"Comput Graph Forum"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b12","doi-asserted-by":"crossref","first-page":"2015","DOI":"10.1109\/TVCG.2020.3027069","article-title":"Pointfilter: Point cloud filtering via encoder-decoder modeling","volume":"27","author":"Zhang","year":"2021","journal-title":"IEEE Trans Vis Comput Graphics"},{"issue":"1","key":"10.1016\/j.cad.2022.103275_b13","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TVCG.2003.1175093","article-title":"Computing and rendering point set surfaces","volume":"9","author":"Alexa","year":"2003","journal-title":"IEEE Trans Vis Comput Graphics"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b14","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1145\/1073204.1073227","article-title":"Robust moving least-squares fitting with sharp features","volume":"24","author":"Fleishman","year":"2005","journal-title":"ACM Trans Graph","ISSN":"https:\/\/id.crossref.org\/issn\/0730-0301","issn-type":"print"},{"issue":"2","key":"10.1016\/j.cad.2022.103275_b15","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1111\/j.1467-8659.2009.01388.x","article-title":"Feature preserving point set surfaces based on non-linear kernel regression","volume":"28","author":"\u00d6ztireli","year":"2009","journal-title":"Comput Graph Forum"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b16","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1145\/1276377.1276405","article-title":"Parameterization-free projection for geometry reconstruction","volume":"26","author":"Lipman","year":"2007","journal-title":"ACM Trans Graph"},{"issue":"5","key":"10.1016\/j.cad.2022.103275_b17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1618452.1618522","article-title":"Consolidation of unorganized point clouds for surface reconstruction","volume":"28","author":"Huang","year":"2009","journal-title":"ACM Trans Graph"},{"issue":"4","key":"10.1016\/j.cad.2022.103275_b18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2601097.2601172","article-title":"Continuous projection for fast L1 reconstruction","volume":"33","author":"Preiner","year":"2014","journal-title":"ACM Trans Graph"},{"key":"10.1016\/j.cad.2022.103275_b19","series-title":"IEEE international conference on shape modeling and applications 2006","isbn-type":"print","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1109\/SMI.2006.38","article-title":"Smoothing by example: Mesh denoising by averaging with similarity-based weights","author":"Shin Yoshizawa","year":"2006","ISBN":"https:\/\/id.crossref.org\/isbn\/0769525911"},{"issue":"8","key":"10.1016\/j.cad.2022.103275_b20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/cgf.12139","article-title":"Patch-collaborative spectral point-cloud denoising","volume":"32","author":"Rosman","year":"2013","journal-title":"Comput Graph Forum"},{"key":"10.1016\/j.cad.2022.103275_b21","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.cagd.2015.03.011","article-title":"Denoising point sets via L0 minimization","volume":"35\u201336","author":"Sun","year":"2015","journal-title":"Comput Aided Geom Design"},{"key":"10.1016\/j.cad.2022.103275_b22","series-title":"2018 international conference on3D vision","first-page":"444","article-title":"Structured low-rank matrix factorization for point-cloud denoising","author":"Sarkar","year":"2018"},{"issue":"11","key":"10.1016\/j.cad.2022.103275_b23","doi-asserted-by":"crossref","first-page":"3255","DOI":"10.1109\/TVCG.2019.2920817","article-title":"Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint","volume":"26","author":"Chen","year":"2020","journal-title":"IEEE Trans Vis Comput Graphics"},{"key":"10.1016\/j.cad.2022.103275_b24","first-page":"1","article-title":"Low rank matrix approximation for 3D geometry filtering","author":"Lu","year":"2020","journal-title":"IEEE Trans Vis Comput Graphics"},{"issue":"2","key":"10.1016\/j.cad.2022.103275_b25","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1111\/cgf.13344","article-title":"PointProNets: Consolidation of point clouds with convolutional neural networks","volume":"37","author":"Roveri","year":"2018","journal-title":"Comput Graph Forum"},{"key":"10.1016\/j.cad.2022.103275_b26","series-title":"Proceedings of the european conference on computer vision","first-page":"386","article-title":"Ec-net: An edge-aware point set consolidation network","author":"Yu","year":"2018"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1531326.1531327","article-title":"Gaussian KD-trees for fast high-dimensional filtering","volume":"28","author":"Adams","year":"2009","journal-title":"ACM Trans Graph","ISSN":"https:\/\/id.crossref.org\/issn\/0730-0301","issn-type":"print"},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b28","doi-asserted-by":"crossref","first-page":"950","DOI":"10.1145\/882262.882368","article-title":"Bilateral mesh denoising","volume":"22","author":"Fleishman","year":"2003","journal-title":"ACM Trans Graph","ISSN":"https:\/\/id.crossref.org\/issn\/0730-0301","issn-type":"print"},{"key":"10.1016\/j.cad.2022.103275_b29","series-title":"Proceedings of the ninth ACM symposium on solid modeling and applications","isbn-type":"print","first-page":"225","article-title":"Reconstruction with 3D geometric bilateral filter","author":"Miropolsky","year":"2004","ISBN":"https:\/\/id.crossref.org\/isbn\/390567355X"},{"issue":"8","key":"10.1016\/j.cad.2022.103275_b30","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1016\/j.cad.2011.04.001","article-title":"Adaptive simplification of point cloud using k-means clustering","volume":"43","author":"Shi","year":"2011","journal-title":"Comput Aided Des","ISSN":"https:\/\/id.crossref.org\/issn\/0010-4485","issn-type":"print"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b31","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1007\/s00371-017-1391-8","article-title":"Guided point cloud denoising via sharp feature skeletons","volume":"33","author":"Zheng","year":"2017","journal-title":"Vis Comput"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2816795.2818063","article-title":"Rolling guidance normal filter for geometric processing","volume":"34","author":"Wang","year":"2015","journal-title":"ACM Trans Graph"},{"issue":"12","key":"10.1016\/j.cad.2022.103275_b33","doi-asserted-by":"crossref","first-page":"3071","DOI":"10.1109\/TPAMI.2019.2921548","article-title":"Real-world image denoising with deep boosting","volume":"42","author":"Chen","year":"2020","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.cad.2022.103275_b34","unstructured":"Taubin\u00a0G. Linear anisotropic mesh filtering. Res Rep RC2213 IBM, 1, (4). 2001."},{"issue":"5","key":"10.1016\/j.cad.2022.103275_b35","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1109\/TVCG.2007.1065","article-title":"Fast and effective feature-preserving mesh denoising","volume":"13","author":"Sun","year":"2007","journal-title":"IEEE Trans Vis Comput Graphics"},{"key":"10.1016\/j.cad.2022.103275_b36","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.cagd.2018.03.004","article-title":"Rolling normal filtering for point clouds","volume":"62","author":"Zheng","year":"2018","journal-title":"Comput Aided Geom Design"},{"key":"10.1016\/j.cad.2022.103275_b37","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.cag.2018.05.014","article-title":"Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics","volume":"74","author":"Yadav","year":"2018","journal-title":"Comput Graph"},{"key":"10.1016\/j.cad.2022.103275_b38","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.cam.2017.04.027","article-title":"Normal estimation via shifted neighborhood for point cloud","volume":"329","author":"Cao","year":"2018","journal-title":"J Comput Appl Math"},{"issue":"8","key":"10.1016\/j.cad.2022.103275_b39","doi-asserted-by":"crossref","first-page":"2080","DOI":"10.1109\/TIP.2007.901238","article-title":"Image denoising by sparse 3-D transform-domain collaborative filtering","volume":"16","author":"Dabov","year":"2007","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.cad.2022.103275_b40","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"2272","article-title":"Non-local sparse models for image restoration","author":"Mairal","year":"2009"},{"key":"10.1016\/j.cad.2022.103275_b41","series-title":"IEEE international conference on computational photography","first-page":"1","article-title":"Combining the power of internal and external denoising","author":"Mosseri","year":"2013"},{"key":"10.1016\/j.cad.2022.103275_b42","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"603","article-title":"External patch prior guided internal clustering for image denoising","author":"Chen","year":"2015"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b43","doi-asserted-by":"crossref","first-page":"2996","DOI":"10.1109\/TIP.2018.2811546","article-title":"External prior guided internal prior learning for real-world noisy image denoising","volume":"27","author":"Xu","year":"2018","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.cad.2022.103275_b44","series-title":"2019 IEEE international conference on image processing","first-page":"1119","article-title":"Simultaneous nonlocal self-similarity prior for image denoising","author":"Zha","year":"2019"},{"key":"10.1016\/j.cad.2022.103275_b45","doi-asserted-by":"crossref","first-page":"8561","DOI":"10.1109\/TIP.2020.3015545","article-title":"Image restoration via simultaneous nonlocal self-similarity priors","volume":"29","author":"Zha","year":"2020","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.cad.2022.103275_b46","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"52","article-title":"Total denoising: Unsupervised learning of 3D point cloud cleaning","author":"Hermosilla","year":"2019"},{"key":"10.1016\/j.cad.2022.103275_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.cad.2020.102860","article-title":"Deep feature-preserving normal estimation for point cloud filtering","volume":"125","author":"Lu","year":"2020","journal-title":"Comput Aided Des","ISSN":"https:\/\/id.crossref.org\/issn\/0010-4485","issn-type":"print"},{"issue":"1","key":"10.1016\/j.cad.2022.103275_b48","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2421636.2421645","article-title":"Edge-aware point set resampling","volume":"32","author":"Huang","year":"2013","journal-title":"ACM Trans Graph"},{"issue":"8","key":"10.1016\/j.cad.2022.103275_b49","doi-asserted-by":"crossref","first-page":"2315","DOI":"10.1109\/TVCG.2017.2725948","article-title":"GPF: GMM-inspired feature-preserving point set filtering","volume":"24","author":"Lu","year":"2018","journal-title":"IEEE Trans Vis Comput Graphics"},{"issue":"2","key":"10.1016\/j.cad.2022.103275_b50","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1111\/cgf.13343","article-title":"PCPNet: Learning local shape properties from raw point clouds","volume":"37","author":"Guerrero","year":"2018","journal-title":"Comput Graph Forum"},{"key":"10.1016\/j.cad.2022.103275_b51","series-title":"Proceedings of the 28th ACM international conference on multimedia","first-page":"1330","article-title":"Differentiable manifold reconstruction for point cloud denoising","author":"Luo","year":"2020"},{"key":"10.1016\/j.cad.2022.103275_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.cad.2020.102857","article-title":"A feature-preserving framework for point cloud denoising","volume":"127","author":"Liu","year":"2020","journal-title":"Comput Aided Des","ISSN":"https:\/\/id.crossref.org\/issn\/0010-4485","issn-type":"print"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b53","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2508363.2508403","article-title":"Structure-preserving image smoothing via region covariances","volume":"32","author":"Karacan","year":"2013","journal-title":"ACM Trans Graph"},{"key":"10.1016\/j.cad.2022.103275_b54","first-page":"659","article-title":"Gaussian mixture models","volume":"741","author":"Reynolds","year":"2009","journal-title":"Encycl Biom"},{"key":"10.1016\/j.cad.2022.103275_b55","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"244","article-title":"Patch group based nonlocal self-similarity prior learning for image denoising","author":"Xu","year":"2015"},{"key":"10.1016\/j.cad.2022.103275_b56","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"479","article-title":"From learning models of natural image patches to whole image restoration","author":"Zoran","year":"2011"},{"key":"10.1016\/j.cad.2022.103275_b57","doi-asserted-by":"crossref","first-page":"3474","DOI":"10.1109\/TIP.2019.2961429","article-title":"3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model","volume":"29","author":"Zeng","year":"2019","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.cad.2022.103275_b58","article-title":"Cloudcompare-open source project","volume":"588","author":"Girardeau-Montaut","year":"2011","journal-title":"OpenSource Proj"},{"key":"10.1016\/j.cad.2022.103275_b59","unstructured":"Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G et al. Meshlab: An open-source mesh processing tool. In: Eurographics Italian chapter conference. 2008. p. 129\u201336."},{"issue":"3","key":"10.1016\/j.cad.2022.103275_b60","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1145\/882262.882342","article-title":"Linear light source reflectometry","volume":"22","author":"Gardner","year":"2003","journal-title":"ACM Trans Graph"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b61","first-page":"1","article-title":"Mesh denoising via cascaded normal regression","volume":"35","author":"Wang","year":"2016","journal-title":"ACM Trans Graph"},{"issue":"6","key":"10.1016\/j.cad.2022.103275_b62","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1016\/j.cag.2013.05.008","article-title":"Point cloud normal estimation via low-rank subspace clustering","volume":"37","author":"Zhang","year":"2013","journal-title":"Comput Graph"},{"key":"10.1016\/j.cad.2022.103275_b63","doi-asserted-by":"crossref","unstructured":"Hu Q, Yang B, Khalid S, Xiao W, Trigoni N, Markham A. Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2021. p. 4977\u201387.","DOI":"10.1109\/CVPR46437.2021.00494"}],"container-title":["Computer-Aided Design"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010448522000562?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010448522000562?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T16:48:11Z","timestamp":1671727691000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010448522000562"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":63,"alternative-id":["S0010448522000562"],"URL":"https:\/\/doi.org\/10.1016\/j.cad.2022.103275","relation":{},"ISSN":["0010-4485"],"issn-type":[{"type":"print","value":"0010-4485"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Structure-Aware Denoising for Real-world Noisy Point Clouds with Complex Structures","name":"articletitle","label":"Article Title"},{"value":"Computer-Aided Design","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cad.2022.103275","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103275"}}