{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,9]],"date-time":"2025-01-09T02:10:20Z","timestamp":1736388620881,"version":"3.32.0"},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.bspc.2024.107016","type":"journal-article","created":{"date-parts":[[2024,10,12]],"date-time":"2024-10-12T17:05:58Z","timestamp":1728752758000},"page":"107016","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PC","title":["Improving the performance of multi-stage HER2 breast cancer detection in hematoxylin-eosin images based on ensemble deep learning"],"prefix":"10.1016","volume":"100","author":[{"ORCID":"https:\/\/orcid.org\/0009-0004-2418-2336","authenticated-orcid":false,"given":"Pateel","family":"G.P.","sequence":"first","affiliation":[]},{"given":"Kedarnath","family":"Senapati","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0004-3952-9785","authenticated-orcid":false,"given":"Abhishek Kumar","family":"Pandey","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.bspc.2024.107016_b1","doi-asserted-by":"crossref","first-page":"394","DOI":"10.3322\/caac.21492","article-title":"GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA Cancer J. Clin."},{"key":"10.1016\/j.bspc.2024.107016_b2","first-page":"2001","article-title":"Evaluation of a predictive method for the h&e-based molecular profiling of breast cancer with deep learning","author":"Arslan","year":"2022","journal-title":"bioRxiv"},{"issue":"33","key":"10.1016\/j.bspc.2024.107016_b3","doi-asserted-by":"crossref","first-page":"3744","DOI":"10.1200\/JCO.2014.55.5730","article-title":"Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2\u2013positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831","volume":"32","author":"Perez","year":"2014","journal-title":"J. Clin. Oncol."},{"issue":"13","key":"10.1016\/j.bspc.2024.107016_b4","doi-asserted-by":"crossref","first-page":"1448","DOI":"10.1200\/JCO.20.01204","article-title":"Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years\u2019 follow-up","volume":"39","author":"Piccart","year":"2021","journal-title":"J. Clin. Oncol."},{"year":"2022","series-title":"Cancer.net editorial board","author":"ASCO.Org","key":"10.1016\/j.bspc.2024.107016_b5"},{"key":"10.1016\/j.bspc.2024.107016_b6","series-title":"ICPRAM","first-page":"495","article-title":"Data fusion of histological and immunohistochemical image data for breast cancer diagnostics using transfer learning","author":"Pradhan","year":"2021"},{"issue":"11","key":"10.1016\/j.bspc.2024.107016_b7","doi-asserted-by":"crossref","first-page":"1364","DOI":"10.5858\/arpa.2018-0902-SA","article-title":"Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology\/college of American pathologists clinical practice guideline focused update","volume":"142","author":"Wolff","year":"2018","journal-title":"Arch. Pathol. Lab Med."},{"issue":"14","key":"10.1016\/j.bspc.2024.107016_b8","first-page":"5078","article-title":"HER-2-targeted therapy: lessons learned and future directions","volume":"9","author":"Nahta","year":"2003","journal-title":"Clin. Cancer Res."},{"year":"2018","series-title":"Number of oncologists per one million people","author":"Michas","key":"10.1016\/j.bspc.2024.107016_b9"},{"year":"2023","series-title":"global pathologist workforce","author":"Andrey Bychkov","key":"10.1016\/j.bspc.2024.107016_b10"},{"issue":"11","key":"10.1016\/j.bspc.2024.107016_b11","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1093\/jnci\/94.11.852","article-title":"Real-world performance of HER2 testing\u2014national surgical adjuvant breast and bowel project experience","volume":"94","author":"Paik","year":"2002","journal-title":"J. Natl. Cancer Inst."},{"issue":"10","key":"10.1016\/j.bspc.2024.107016_b12","doi-asserted-by":"crossref","first-page":"1352","DOI":"10.1016\/j.acra.2020.05.040","article-title":"Radiomics signatures based on multiparametric MRI for the preoperative prediction of the her2 status of patients with breast cancer","volume":"28","author":"Zhou","year":"2021","journal-title":"Academic Radiol."},{"issue":"1","key":"10.1016\/j.bspc.2024.107016_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/srep26286","article-title":"Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis","volume":"6","author":"Litjens","year":"2016","journal-title":"Sci. Rep."},{"issue":"4","key":"10.1016\/j.bspc.2024.107016_b14","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1093\/ajcp\/aqaa151","article-title":"Artificial intelligence improves the accuracy in histologic classification of breast lesions","volume":"155","author":"Pol\u00f3nia","year":"2021","journal-title":"Am. J. Clin. Path."},{"issue":"1","key":"10.1016\/j.bspc.2024.107016_b15","doi-asserted-by":"crossref","first-page":"45938","DOI":"10.1038\/srep45938","article-title":"Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer","volume":"7","author":"Vandenberghe","year":"2017","journal-title":"Sci. Rep."},{"key":"10.1016\/j.bspc.2024.107016_b16","doi-asserted-by":"crossref","unstructured":"C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.bspc.2024.107016_b17","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.bspc.2024.107016_b18","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.bspc.2024.107016_b19","series-title":"2015 7th International IEEE\/EMBS Conference on Neural Engineering","first-page":"126","article-title":"An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing","author":"Dalhoumi","year":"2015"},{"key":"10.1016\/j.bspc.2024.107016_b20","doi-asserted-by":"crossref","first-page":"80","DOI":"10.3389\/fgene.2019.00080","article-title":"Deep learning based analysis of histopathological images of breast cancer","volume":"10","author":"Xie","year":"2019","journal-title":"Front. Genet."},{"key":"10.1016\/j.bspc.2024.107016_b21","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.ymeth.2019.06.014","article-title":"Breast cancer histopathological image classification using a hybrid deep neural network","volume":"173","author":"Yan","year":"2020","journal-title":"Methods"},{"key":"10.1016\/j.bspc.2024.107016_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102705","article-title":"Histopathological image classification based on cross-domain deep transferred feature fusion","volume":"68","author":"Wang","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"issue":"02","key":"10.1016\/j.bspc.2024.107016_b23","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.imed.2022.05.004","article-title":"Application of transfer learning and ensemble learning in image-level classification for breast histopathology","volume":"3","author":"Zheng","year":"2023","journal-title":"Intell. Med."},{"year":"2023","series-title":"HAHNet: A convolutional neural network for HER2 status classification of breast cancer","author":"Wang","key":"10.1016\/j.bspc.2024.107016_b24"},{"issue":"11","key":"10.1016\/j.bspc.2024.107016_b25","doi-asserted-by":"crossref","first-page":"2825","DOI":"10.3390\/diagnostics12112825","article-title":"Strategies for enhancing the multi-stage classification performances of her2 breast cancer from hematoxylin and eosin images","volume":"12","author":"Shovon","year":"2022","journal-title":"Diagnostics"},{"year":"2023","series-title":"Addressing uncertainty in imbalanced histopathology image classification of HER2 breast cancer: An interpretable ensemble approach with threshold filtered single instance evaluation (SIE)","author":"Shovon","key":"10.1016\/j.bspc.2024.107016_b26"},{"year":"2022","series-title":"convoHER2: A deep neural network for multi-stage classification of HER2 breast cancer","author":"Mridha","key":"10.1016\/j.bspc.2024.107016_b27"},{"issue":"14","key":"10.1016\/j.bspc.2024.107016_b28","doi-asserted-by":"crossref","first-page":"4728","DOI":"10.3390\/app10144728","article-title":"Weakly-supervised classification of HER2 expression in breast cancer haematoxylin and eosin stained slides","volume":"10","author":"Oliveira","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.bspc.2024.107016_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.105152","article-title":"Breast cancer diagnosis from histopathology images using deep neural network and XGBoost","volume":"86","author":"Maleki","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"issue":"7","key":"10.1016\/j.bspc.2024.107016_b30","doi-asserted-by":"crossref","first-page":"e197700","DOI":"10.1001\/jamanetworkopen.2019.7700","article-title":"Artificial intelligence algorithms to assess hormonal status from tissue microarrays in patients with breast cancer","volume":"2","author":"Shamai","year":"2019","journal-title":"JAMA Netw. Open"},{"key":"10.1016\/j.bspc.2024.107016_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103564","article-title":"Automatic detection metastasis in breast histopathological images based on ensemble learning and color adjustment","volume":"75","author":"Luz","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"year":"2022","series-title":"The American cancer society medical and editorial content team","author":"Cancer.org","key":"10.1016\/j.bspc.2024.107016_b32"},{"key":"10.1016\/j.bspc.2024.107016_b33","doi-asserted-by":"crossref","unstructured":"S. Liu, C. Zhu, F. Xu, X. Jia, Z. Shi, M. Jin, Bci: Breast cancer immunohistochemical image generation through pyramid pix2pix, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1815\u20131824, URL.","DOI":"10.1109\/CVPRW56347.2022.00198"},{"key":"10.1016\/j.bspc.2024.107016_b34","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424010747?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424010747?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,1,8]],"date-time":"2025-01-08T03:23:17Z","timestamp":1736306597000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809424010747"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":34,"alternative-id":["S1746809424010747"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2024.107016","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Improving the performance of multi-stage HER2 breast cancer detection in hematoxylin-eosin images based on ensemble deep learning","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2024.107016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"107016"}}