{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:35:50Z","timestamp":1740144950507,"version":"3.37.3"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,2,20]],"date-time":"2024-02-20T00:00:00Z","timestamp":1708387200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/100017368","name":"International Science and Technology Cooperation Program of Sichuan Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100017368","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.bspc.2024.106104","type":"journal-article","created":{"date-parts":[[2024,2,21]],"date-time":"2024-02-21T12:29:37Z","timestamp":1708518577000},"page":"106104","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Uncertainty quantification of cuffless blood pressure estimation based on parameterized model evidential ensemble learning"],"prefix":"10.1016","volume":"92","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0251-2256","authenticated-orcid":false,"given":"Zhan","family":"Shen","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5597-908X","authenticated-orcid":false,"given":"Tapabrata","family":"Chakraborti","sequence":"additional","affiliation":[]},{"given":"Wenyan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shuaiting","family":"Yao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0007-0742-1130","authenticated-orcid":false,"given":"Zhizhong","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Yifan","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3269-2852","authenticated-orcid":false,"given":"Xiaorong","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"10159","key":"10.1016\/j.bspc.2024.106104_b1","doi-asserted-by":"crossref","first-page":"1923","DOI":"10.1016\/S0140-6736(18)32225-6","volume":"392","author":"Stanaway","year":"2018","journal-title":"Lancet"},{"issue":"10199","key":"10.1016\/j.bspc.2024.106104_b2","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1016\/S0140-6736(19)30955-9","article-title":"The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1 \u22c5 1 million adults","volume":"394","author":"Geldsetzer","year":"2019","journal-title":"Lancet"},{"issue":"1","key":"10.1016\/j.bspc.2024.106104_b3","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1038\/s41746-023-00835-6","article-title":"Emerging sensing and modeling technologies for wearable and cuffless blood pressure monitoring","volume":"6","author":"Zhao","year":"2023","journal-title":"NPJ Digit. Med."},{"issue":"11","key":"10.1016\/j.bspc.2024.106104_b4","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1038\/s41581-023-00747-4","article-title":"Diagnosis of cardiovascular disease in patients with chronic kidney disease","volume":"19","author":"Zoccali","year":"2023","journal-title":"Nat. Rev. Nephrol."},{"year":"2011","series-title":"McDonald\u2019s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles","author":"Vlachopoulos","key":"10.1016\/j.bspc.2024.106104_b5"},{"issue":"5","key":"10.1016\/j.bspc.2024.106104_b6","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1109\/TBME.2015.2480679","article-title":"Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio","volume":"63","author":"Ding","year":"2015","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.bspc.2024.106104_b7","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.jelectrocard.2010.11.019","article-title":"Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure","volume":"44","author":"Mase","year":"2011","journal-title":"J. Electrocardiol."},{"key":"10.1016\/j.bspc.2024.106104_b8","series-title":"2010 Annual International Conference of the IEEE Engineering in Medicine and Biology","first-page":"598","article-title":"Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?","author":"Proen\u00e7a","year":"2010"},{"key":"10.1016\/j.bspc.2024.106104_b9","doi-asserted-by":"crossref","first-page":"141970","DOI":"10.1109\/ACCESS.2019.2942936","article-title":"Cuffless continuous blood pressure estimation from pulse morphology of photoplethysmograms","volume":"7","author":"Yan","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2024.106104_b10","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.neunet.2022.04.017","article-title":"A new deep learning framework based on blood pressure range constraint for continuous cuffless BP estimation","volume":"152","author":"Chen","year":"2022","journal-title":"Neural Netw."},{"issue":"3","key":"10.1016\/j.bspc.2024.106104_b11","first-page":"1927","article-title":"Ensemble learning with attention-based multiple instance pooling for classification of SPT","volume":"69","author":"Zhou","year":"2021","journal-title":"IEEE Trans. Circuits Syst. II"},{"key":"10.1016\/j.bspc.2024.106104_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.111035","article-title":"MEEDNets: Medical image classification via ensemble bio-inspired evolutionary DenseNets","volume":"280","author":"Zhu","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2024.106104_b13","doi-asserted-by":"crossref","first-page":"103452","DOI":"10.1109\/ACCESS.2021.3098986","article-title":"An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification","volume":"9","author":"Essa","year":"2021","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.bspc.2024.106104_b14","doi-asserted-by":"crossref","first-page":"373","DOI":"10.32604\/biocell.2023.025905","article-title":"PSTCNN: Explainable COVID-19 diagnosis using PSO-guided self-tuning CNN","volume":"47","author":"Wang","year":"2023","journal-title":"Biocell: Off. J. Soc. Lat. Microsc. Electron."},{"key":"10.1016\/j.bspc.2024.106104_b15","first-page":"1","article-title":"Clinical AI tools must convey predictive uncertainty for each individual patient","author":"Banerji","year":"2023","journal-title":"Nat. Med."},{"key":"10.1016\/j.bspc.2024.106104_b16","doi-asserted-by":"crossref","unstructured":"Z. Shen, L. Liu, X.R. Ding, Bayesian Model Averaging for Improving the Accuracy of Cuffless Blood Pressure Estimation, in: Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022, pp. 3981\u20133984.","DOI":"10.1109\/EMBC48229.2022.9871581"},{"issue":"4","key":"10.1016\/j.bspc.2024.106104_b17","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1177\/016173467900100406","article-title":"Measurements of Young\u2019s modulus of elasticity of the canine aorta with ultrasound","volume":"1","author":"Hughes","year":"1979","journal-title":"Ultrason. Imaging"},{"key":"10.1016\/j.bspc.2024.106104_b18","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1007\/BF02345755","article-title":"Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration","volume":"38","author":"Chen","year":"2000","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.bspc.2024.106104_b19","series-title":"2005 IEEE Engineering in Medicine and Biology 27th Annual Conference","first-page":"5877","article-title":"Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time","author":"Poon","year":"2006"},{"key":"10.1016\/j.bspc.2024.106104_b20","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1007\/s10558-009-9070-7","article-title":"An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects","volume":"9","author":"Wong","year":"2009","journal-title":"Cardiovasc. Eng."},{"issue":"14","key":"10.1016\/j.bspc.2024.106104_b21","doi-asserted-by":"crossref","first-page":"5355","DOI":"10.1175\/JCLI-D-15-0603.1","article-title":"Reconstructed regional mean climate with Bayesian model averaging: a case study for temperature reconstruction in the Yunnan\u2013Guizhou Plateau, china","volume":"29","author":"Zhang","year":"2016","journal-title":"J. Clim."},{"issue":"3","key":"10.1016\/j.bspc.2024.106104_b22","doi-asserted-by":"crossref","first-page":"954","DOI":"10.2166\/nh.2017.272","article-title":"Quantifying multi-source uncertainties in multi-model predictions using the Bayesian model averaging scheme","volume":"49","author":"Jiang","year":"2018","journal-title":"Hydrol. Res."},{"issue":"3","key":"10.1016\/j.bspc.2024.106104_b23","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1139\/f94-071","article-title":"Calculation of Bayes posterior probability distributions for key population parameters","volume":"51","author":"Walters","year":"1994","journal-title":"Can. J. Fish. Aquat. Sci."},{"issue":"1","key":"10.1016\/j.bspc.2024.106104_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2016.35","article-title":"MIMIC-III, a freely accessible critical care database","volume":"3","author":"Johnson","year":"2016","journal-title":"Sci. Data"},{"year":"2012","series-title":"Wavelet diagnosis of ECG signals with kaiser based noise diminution","author":"Chandramouleeswaran","key":"10.1016\/j.bspc.2024.106104_b25"},{"year":"2023","series-title":"BP-annotate","author":"Laurin","key":"10.1016\/j.bspc.2024.106104_b26"},{"issue":"2","key":"10.1016\/j.bspc.2024.106104_b27","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.bspc.2011.03.004","article-title":"A novel method for detecting R-peaks in electrocardiogram (ECG) signal","volume":"7","author":"Manikandan","year":"2012","journal-title":"Biomed. Signal Process. Control"},{"issue":"4","key":"10.1016\/j.bspc.2024.106104_b28","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.bspc.2011.03.009","article-title":"Time\u2013frequency analysis of variabilities of heart rate, systolic blood pressure and pulse transit time before and after exercise using the recursive autoregressive model","volume":"6","author":"Liu","year":"2011","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"10.1016\/j.bspc.2024.106104_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1468-6708-6-1","article-title":"The blood pressure uncertainty range\u2013a pragmatic approach to overcome current diagnostic uncertainties (II)","volume":"6","author":"Pater","year":"2005","journal-title":"Curr. Control. Trials Cardiovasc. Med."},{"issue":"3","key":"10.1016\/j.bspc.2024.106104_b30","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0165-1765(80)90024-5","article-title":"Efficient tests for normality, homoscedasticity and serial independence of regression residuals","volume":"6","author":"Jarque","year":"1980","journal-title":"Econom. Lett."},{"issue":"1","key":"10.1016\/j.bspc.2024.106104_b31","doi-asserted-by":"crossref","first-page":"11554","DOI":"10.1038\/s41598-017-11507-3","article-title":"Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation","volume":"7","author":"Ding","year":"2017","journal-title":"Sci. Rep."},{"key":"10.1016\/j.bspc.2024.106104_b32","series-title":"2009 36th Annual Computers in Cardiology Conference","first-page":"201","article-title":"Blood pressure tracking capabilities of pulse transit times in different arterial segments: a clinical evaluation","author":"Douniama","year":"2009"},{"key":"10.1016\/j.bspc.2024.106104_b33","series-title":"2006 International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"5088","article-title":"Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period","author":"M\u00fchlsteff","year":"2006"},{"key":"10.1016\/j.bspc.2024.106104_b34","first-page":"31","article-title":"Predictive uncertainty estimation via prior networks","author":"Malinin","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"1988","series-title":"Statistical field theory","author":"Parisi","key":"10.1016\/j.bspc.2024.106104_b35"},{"issue":"3","key":"10.1016\/j.bspc.2024.106104_b36","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1111\/j.1467-9868.2007.00650.x","article-title":"Marginal likelihood estimation via power posteriors","volume":"70","author":"Friel","year":"2008","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.bspc.2024.106104_b37","doi-asserted-by":"crossref","first-page":"90100","DOI":"10.1016\/S0022-2496(02)00028-7","article-title":"Tutorial on maximum likelihood estimation","volume":"47","author":"Myung","year":"2003","journal-title":"J. Math. Psychol."},{"issue":"29","key":"10.1016\/j.bspc.2024.106104_b38","doi-asserted-by":"crossref","first-page":"14516","DOI":"10.1073\/pnas.1810420116","article-title":"A modern maximum-likelihood theory for high-dimensional logistic regression","volume":"116","author":"Sur","year":"2019","journal-title":"Proc. Natl. Acad. Sci."},{"first-page":"1708","year":"2014","series-title":"IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices","key":"10.1016\/j.bspc.2024.106104_b39"},{"first-page":"10","year":"1987","series-title":"American National Standards for Electronic Or Automated Sphygmomanometers","key":"10.1016\/j.bspc.2024.106104_b40"},{"issue":"7","key":"10.1016\/j.bspc.2024.106104_b41","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1097\/00004872-199007000-00004","article-title":"The British hypertension society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems","volume":"8","author":"O\u2019Brien","year":"1990","journal-title":"J. Hypertens."},{"year":"2023","series-title":"Hypertension","author":"Organization","key":"10.1016\/j.bspc.2024.106104_b42"},{"key":"10.1016\/j.bspc.2024.106104_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.105287","article-title":"BPNet: A multi-modal fusion neural network for blood pressure estimation using ECG and PPG","volume":"86","author":"Long","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106104_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106191","article-title":"A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms","volume":"207","author":"Baker","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"issue":"4","key":"10.1016\/j.bspc.2024.106104_b45","doi-asserted-by":"crossref","first-page":"804","DOI":"10.3390\/mi14040804","article-title":"A multi-parameter fusion method for cuffless continuous blood pressure estimation based on electrocardiogram and photoplethysmogram","volume":"14","author":"Ma","year":"2023","journal-title":"Micromachines"},{"year":"2005","series-title":"Statistical Problems in Particle Physics, Astrophysics and Cosmology: PHYSTAT05","key":"10.1016\/j.bspc.2024.106104_b46"},{"year":"2021","series-title":"A gentle introduction to conformal prediction and distribution-free uncertainty quantification","author":"Angelopoulos","key":"10.1016\/j.bspc.2024.106104_b47"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424001629?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424001629?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T07:39:55Z","timestamp":1716277195000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809424001629"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":47,"alternative-id":["S1746809424001629"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2024.106104","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Uncertainty quantification of cuffless blood pressure estimation based on parameterized model evidential ensemble learning","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2024.106104","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"106104"}}