{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:08:46Z","timestamp":1732043326436,"version":"3.28.0"},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012899","name":"Lanzhou University","doi-asserted-by":"publisher","award":["2019YFA0706200","61627808","2021ZD0200601","61632014","lzujbky-2021-kb06"],"id":[{"id":"10.13039\/100012899","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004663","name":"Ministry of Science and Technology, Taiwan","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004663","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002855","name":"Ministry of Science and Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002855","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["lzujbky-2023-it30"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1016\/j.bspc.2024.106036","type":"journal-article","created":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T07:08:02Z","timestamp":1709276882000},"page":"106036","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Robust sparse graph regularized nonnegative matrix factorization for automatic depression diagnosis"],"prefix":"10.1016","volume":"93","author":[{"given":"Lu","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Jitao","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Quanhong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jinzhou","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Hele","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Peng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3514-5413","authenticated-orcid":false,"given":"Bin","family":"Hu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2024.106036_b1","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1146\/annurev-publhealth-040617-013629","article-title":"The economic case for the prevention of mental illness","volume":"40","author":"McDaid","year":"2019","journal-title":"Annu. Rev. Public Health"},{"key":"10.1016\/j.bspc.2024.106036_b2","doi-asserted-by":"crossref","first-page":"1581","DOI":"10.1109\/TAFFC.2020.3021755","article-title":"A deep multiscale spatiotemporal network for assessing depression from facial dynamics","volume":"13","author":"de Melo","year":"2022","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2024.106036_b3","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1016\/j.jad.2022.12.029","article-title":"A method for diagnosing depression: Facial expression mimicry is evaluated by facial expression recognition","volume":"323","author":"Fu","year":"2023","journal-title":"J. Affect. Disord."},{"key":"10.1016\/j.bspc.2024.106036_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103287","article-title":"2-level hierarchical depression recognition method based on task-stimulated and integrated speech features","volume":"72","author":"Xing","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106036_b5","doi-asserted-by":"crossref","first-page":"28196","DOI":"10.1109\/ACCESS.2019.2901950","article-title":"Multimodal mild depression recognition based on EEG-EM synchronization acquisition network","volume":"7","author":"Zhu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2024.106036_b6","doi-asserted-by":"crossref","first-page":"958","DOI":"10.1109\/TAFFC.2020.2981440","article-title":"Fusing of electroencephalogram and eye movement with group sparse canonical correlation analysis for anxiety detection","volume":"13","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2024.106036_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2022.103695","article-title":"Filterable sample consensus based on angle variance for pupil segmentation","volume":"130","author":"Zhong","year":"2022","journal-title":"Digit. Signal Process."},{"key":"10.1016\/j.bspc.2024.106036_b8","doi-asserted-by":"crossref","first-page":"2545","DOI":"10.1109\/JBHI.2020.3045718","article-title":"An optimal channel selection for EEG-based depression detection via kernel-target alignment","volume":"25","author":"Shen","year":"2021","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.bspc.2024.106036_b9","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/TAFFC.2021.3054953","article-title":"Effective connectivity based EEG revealing the inhibitory deficits for distracting stimuli in major depression disorders","volume":"14","author":"Li","year":"2023","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2024.106036_b10","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.compbiomed.2018.05.019","article-title":"A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals","volume":"99","author":"Tsiouris","year":"2018","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2024.106036_b11","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.biopsycho.2008.07.008","article-title":"Electroencephalographic frontal asymmetry and depressive symptoms in the elderly","volume":"79","author":"Deslandes","year":"2008","journal-title":"Biol. Psychol."},{"key":"10.1016\/j.bspc.2024.106036_b12","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1109\/MIS.2011.58","article-title":"EEG-based cognitive interfaces for ubiquitous applications: Developments and challenges","volume":"26","author":"Hu","year":"2011","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.bspc.2024.106036_b13","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.bspc.2024.106036_b14","doi-asserted-by":"crossref","first-page":"4579","DOI":"10.3390\/rs14184579","article-title":"Dimensionality reduction and classification of hyperspectral remote sensing image feature extraction","volume":"14","author":"Li","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.bspc.2024.106036_b15","doi-asserted-by":"crossref","first-page":"8083","DOI":"10.1007\/s12652-020-02542-6","article-title":"Improved local fisher discriminant analysis based dimensionality reduction for cancer disease prediction","volume":"12","author":"Prakash","year":"2020","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.bspc.2024.106036_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2023.102000","article-title":"Principal component analysis and manifold learning techniques for the design of brain-computer interfaces based on steady-state visually evoked potentials","volume":"68","author":"Yesilkaya","year":"2023","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.bspc.2024.106036_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118555","article-title":"Kernel robust singular value decomposition","volume":"211","author":"Lima Neto","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2024.106036_b18","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/TKDE.2018.2842023","article-title":"A new formulation of linear discriminant analysis for robust dimensionality reduction","volume":"31","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.bspc.2024.106036_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108422","article-title":"Neighborhood linear discriminant analysis","volume":"123","author":"Zhu","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2024.106036_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109282","article-title":"Self-supervised semi-supervised nonnegative matrix factorization for data clustering","volume":"137","author":"Chavoshinejad","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2024.106036_b21","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.1016\/j.ins.2022.05.101","article-title":"Dual graph-regularized sparse concept factorization for clustering","volume":"607","author":"Wang","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.bspc.2024.106036_b22","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1016\/j.ins.2021.08.040","article-title":"Adaptive graph guided concept factorization on grassmann manifold","volume":"576","author":"Wei","year":"2021","journal-title":"Inform. Sci."},{"key":"10.1016\/j.bspc.2024.106036_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103576","article-title":"A supervised independent component analysis algorithm for motion imagery-based brain computer interface","volume":"75","author":"Zou","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106036_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.apacoust.2020.107666","article-title":"Combining adaptive sparse NMF feature extraction and soft mask to optimize DNN for speech enhancement","volume":"171","author":"Jia","year":"2021","journal-title":"Appl. Acoust."},{"key":"10.1016\/j.bspc.2024.106036_b25","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.ins.2017.11.038","article-title":"Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition","volume":"432","author":"Zhang","year":"2018","journal-title":"Inform. Sci."},{"key":"10.1016\/j.bspc.2024.106036_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110465","article-title":"Robust dual-graph discriminative NMF for data classification","volume":"268","author":"Lu","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2024.106036_b27","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"10.1016\/j.bspc.2024.106036_b28","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/0010-0285(77)90016-0","article-title":"Hierarchical structure in perceptual representation","volume":"9","author":"Palmer","year":"1977","journal-title":"Cogn. Psychol."},{"key":"10.1016\/j.bspc.2024.106036_b29","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1146\/annurev.ne.19.030196.003045","article-title":"Visual object recognition","volume":"19","author":"Logothetis","year":"1996","journal-title":"Annu. Rev. Neurosci."},{"key":"10.1016\/j.bspc.2024.106036_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109127","article-title":"Log-based sparse nonnegative matrix factorization for data representation","volume":"251","author":"Peng","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2024.106036_b31","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.patcog.2018.04.029","article-title":"A nonlinear orthogonal non-negative matrix factorization approach to subspace clustering","volume":"82","author":"Toli\u0107","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2024.106036_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104499","article-title":"Multiple graph regularized semi-supervised nonnegative matrix factorization with adaptive weights for clustering","volume":"106","author":"Zhang","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.bspc.2024.106036_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119949","article-title":"Dual-graph regularized concept factorization for multi-view clustering","volume":"223","author":"Mu","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.bspc.2024.106036_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.105257","article-title":"Feature extraction based on sparse graphs embedding for automatic depression detection","volume":"86","author":"Zhong","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106036_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104505","article-title":"Robust discriminant feature extraction for automatic depression recognition","volume":"82","author":"Zhong","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2024.106036_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.111165","article-title":"Spatio-temporal scale information fusion of functional near-infrared spectroscopy signal for depression detection","volume":"283","author":"Zhong","year":"2024","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2024.106036_b37","article-title":"Robust orthogonal nonnegative matrix tri-factorization for data representation","volume":"201\u2013202","author":"Peng","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2024.106036_b38","doi-asserted-by":"crossref","first-page":"192","DOI":"10.3389\/fnins.2020.00192","article-title":"A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography","volume":"14","author":"Li","year":"2020","journal-title":"Front. Neurosci."},{"issue":"1","key":"10.1016\/j.bspc.2024.106036_b39","article-title":"Depression detection based on geometrical features extracted from SODP shape of EEG signals and binary PSO","volume":"38","author":"Akbari","year":"2021","journal-title":"Trait. Signal"},{"key":"10.1016\/j.bspc.2024.106036_b40","doi-asserted-by":"crossref","first-page":"30332","DOI":"10.1109\/ACCESS.2020.2971656","article-title":"HybridEEGNet: A convolutional neural network for EEG feature learning and depression discrimination","volume":"8","author":"Wan","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2024.106036_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.107113","article-title":"Feature-level fusion based on spatial-temporal of pervasive EEG for depression recognition","volume":"226","author":"Zhang","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2024.106036_b42","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2024.106036_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107683","article-title":"Robust semi-supervised nonnegative matrix factorization for image clustering","volume":"111","author":"Peng","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.bspc.2024.106036_b44","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.ins.2021.11.045","article-title":"Dual semi-supervised convex nonnegative matrix factorization for data representation","volume":"585","author":"Peng","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.bspc.2024.106036_b45","doi-asserted-by":"crossref","unstructured":"Liang Du, Xuan Li, Yi-Dong Shen, Robust Nonnegative Matrix Factorization via Half-Quadratic Minimization, in: 2012 IEEE 12th International Conference on Data Mining, Vol. 226, 2012, pp. 201\u2013210.","DOI":"10.1109\/ICDM.2012.39"},{"key":"10.1016\/j.bspc.2024.106036_b46","doi-asserted-by":"crossref","first-page":"11599","DOI":"10.1007\/s10489-022-03884-8","article-title":"Robust semi-supervised data representation and imputation by correntropy based constraint nonnegative matrix factorization","volume":"53","author":"Zhou","year":"2023","journal-title":"Appl. Intell."},{"key":"10.1016\/j.bspc.2024.106036_b47","doi-asserted-by":"crossref","first-page":"7653","DOI":"10.1007\/s10489-021-02826-0","article-title":"Correntropy-based dual graph regularized nonnegative matrix factorization with lp smoothness for data representation","volume":"52","author":"Shu","year":"2022","journal-title":"Appl. Intell."},{"issue":"2","key":"10.1016\/j.bspc.2024.106036_b48","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1109\/TCSVT.2018.2799214","article-title":"Robust sparse linear discriminant analysis","volume":"29","author":"Wen","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"10","key":"10.1016\/j.bspc.2024.106036_b49","doi-asserted-by":"crossref","first-page":"2085","DOI":"10.1109\/TPAMI.2015.2400461","article-title":"Robust structured subspace learning for data representation","volume":"37","author":"Li","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2024.106036_b50","series-title":"Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)","first-page":"347","article-title":"Correntropy-based document clustering via nonnegative matrix factorization","volume":"vol. 7553","author":"Ensari","year":"2012"},{"key":"10.1016\/j.bspc.2024.106036_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107056","article-title":"Robust microarray data feature selection using a correntropy based distance metric learning approach","volume":"161","author":"Vahabzadeh","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2024.106036_b52","doi-asserted-by":"crossref","first-page":"3376","DOI":"10.1109\/TSP.2016.2539127","article-title":"Generalized correntropy for robust adaptive filtering","volume":"64","author":"Chen","year":"2016","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.bspc.2024.106036_b53","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1109\/TCSVT.2017.2783364","article-title":"Maximum correntropy criterion-based sparse subspace learning for unsupervised feature selection","volume":"29","author":"Zhou","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.bspc.2024.106036_b54","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.neucom.2018.07.049","article-title":"Correntropy based graph regularized concept factorization for clustering","volume":"316","author":"Peng","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.bspc.2024.106036_b55","first-page":"585","article-title":"Laplacian eigenmaps and spectral techniques for embedding and clustering","volume":"14","author":"Belkin","year":"2001","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.bspc.2024.106036_b56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-14-S4-S1","article-title":"Non-negative matrix factorization by maximizing correntropy for cancer clustering","volume":"14","author":"Wang","year":"2013","journal-title":"BMC Bioinform."},{"key":"10.1016\/j.bspc.2024.106036_b57","doi-asserted-by":"crossref","first-page":"2151","DOI":"10.1109\/TKDE.2013.98","article-title":"Convergence analysis of graph regularized non-negative matrix factorization","volume":"26","author":"Yang","year":"2013","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.bspc.2024.106036_b58","first-page":"186","article-title":"Locality preserving projections","volume":"16","author":"He","year":"2003","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.bspc.2024.106036_b59","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1162\/089976698300017467","article-title":"Nonlinear component analysis as a kernel eigenvalue problem","volume":"10","author":"Sch\u00f6lkopf","year":"1998","journal-title":"Neural Comput."},{"year":"2016","series-title":"Kernel nonnegative matrix factorization without the curse of the pre-image\u2014Application to unmixing hyperspectral images","author":"Zhu","key":"10.1016\/j.bspc.2024.106036_b60"},{"key":"10.1016\/j.bspc.2024.106036_b61","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.neucom.2018.06.083","article-title":"Face recognition using nonnegative matrix factorization with fractional power inner product kernel","volume":"348","author":"Chen","year":"2019","journal-title":"Neurocomputing"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424000946?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424000946?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T17:03:50Z","timestamp":1731517430000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809424000946"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":61,"alternative-id":["S1746809424000946"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2024.106036","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust sparse graph regularized nonnegative matrix factorization for automatic depression diagnosis","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2024.106036","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106036"}}