{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T11:16:07Z","timestamp":1724152567319},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.bspc.2024.105987","type":"journal-article","created":{"date-parts":[[2024,2,8]],"date-time":"2024-02-08T22:22:17Z","timestamp":1707430937000},"page":"105987","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Enhancing non-small cell lung cancer radiotherapy planning: A deep learning-based multi-modal fusion approach for accurate GTV segmentation"],"prefix":"10.1016","volume":"92","author":[{"given":"Shaik","family":"Ummay Atiya","sequence":"first","affiliation":[]},{"given":"N.V.K.","family":"Ramesh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2024.105987_b0005","article-title":"Review of deep learning based automatic segmentation for lung cancer radiotherapy","volume":"11","author":"Liu","year":"2021","journal-title":"Front. Oncol."},{"key":"10.1016\/j.bspc.2024.105987_b0010","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1002\/acm2.12982","article-title":"Current status of Radiomics for cancer management: challenges versus opportunities for clinical practice","volume":"21","author":"Li","year":"2020","journal-title":"J. Appl. Clin. Med. Phys."},{"key":"10.1016\/j.bspc.2024.105987_b0015","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/S0167-8140(01)00470-4","article-title":"Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET)","volume":"62","author":"Erdi","year":"2002","journal-title":"Radiother. Oncol."},{"issue":"7","key":"10.1016\/j.bspc.2024.105987_b0020","doi-asserted-by":"crossref","first-page":"114","DOI":"10.22362\/ijcert\/2022\/v9\/i07\/v9i0701","article-title":"Lung nodule detection and classification using image processing techniques","volume":"9","author":"Velugoti","year":"2022","journal-title":"International Journal of Computer Engineering in Research Trends"},{"key":"10.1016\/j.bspc.2024.105987_b0025","doi-asserted-by":"crossref","unstructured":"F. Zhang, Q. Wang, H. Li, (2020). Automatic segmentation of the gross target volume in non-small cell lung cancer using a modified version of ResNet.Technology in Cancer Research & Treatment,19: 1533033820947484.","DOI":"10.1177\/1533033820947484"},{"key":"10.1016\/j.bspc.2024.105987_b0030","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1093\/jrr\/rraa132","article-title":"Automated approach for segmenting gross tumor volumes for lung cancer stereotactic body radiation therapy using CT-based dense V-networks","volume":"62","author":"Cui","year":"2021","journal-title":"J. Radiat. Res."},{"key":"10.1016\/j.bspc.2024.105987_b0035","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.clon.2020.07.019","article-title":"Geometric and dosimetric evaluation of a commercially available auto-segmentation tool for gross tumour volume delineation in locally advanced non-small cell lung cancer: a feasibility study","volume":"33","author":"Barrett","year":"2021","journal-title":"Clin. Oncol."},{"key":"10.1016\/j.bspc.2024.105987_b0040","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.3389\/fonc.2019.01192","article-title":"Deep learning improved clinical target volume contouring quality and efficiency for postoperative radiation therapy in non-small cell lung cancer","volume":"9","author":"Bi","year":"2019","journal-title":"Front. Oncol."},{"key":"10.1016\/j.bspc.2024.105987_b0045","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.phro.2021.08.003","article-title":"Automated clinical target volume delineation using deep 3D neural networks in radiation therapy of Non-small Cell Lung Cancer","volume":"19","author":"Xie","year":"2021","journal-title":"Physics and Imaging in Radiation Oncology"},{"key":"10.1016\/j.bspc.2024.105987_b0050","doi-asserted-by":"crossref","unstructured":"X. Yu, F. Jin, H. Luo, Q. Lei, Y. Wu, (2022) Gross tumor volume segmentation for stage III NSCLC radiotherapy using 3D ResSE-Unet.Technology in Cancer Research & Treatment,21: 15330338221090847.","DOI":"10.1177\/15330338221090847"},{"key":"10.1016\/j.bspc.2024.105987_b0055","doi-asserted-by":"crossref","DOI":"10.3389\/fonc.2020.564857","article-title":"Cone-beam-CT guided adaptive radiotherapy for locally advanced non-small cell lung cancer enables quality assurance and superior sparing of healthy lung","volume":"10","author":"Hoegen","year":"2020","journal-title":"Front. Oncol."},{"key":"10.1016\/j.bspc.2024.105987_b0060","doi-asserted-by":"crossref","first-page":"3423","DOI":"10.1038\/s41467-022-30841-3","article-title":"Automated detection and segmentation of non-small cell lung cancer computed tomography images","volume":"13","author":"Primakov","year":"2022","journal-title":"Nat. Commun."},{"key":"10.1016\/j.bspc.2024.105987_b0065","unstructured":"https:\/\/wiki.cancerimagingarchive.net\/display\/Public\/NSCLC+Radiogenomics."},{"key":"10.1016\/j.bspc.2024.105987_b0070","doi-asserted-by":"crossref","first-page":"821","DOI":"10.32604\/cmc.2021.016131","article-title":"M. Multimodal medical image registration and fusion for quality enhancement","volume":"68","author":"Azam","year":"2021","journal-title":"Computers, Materials & Continua"},{"key":"10.1016\/j.bspc.2024.105987_b0075","doi-asserted-by":"crossref","unstructured":"E. Haber, J. Modersitzki. (2006) Intensity gradient based registration and fusion of multi-modal images. InMedical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1-6, 2006. Proceedings, Springer Berlin Heidelberg. 6:726-733.","DOI":"10.1007\/11866763_89"},{"key":"10.1016\/j.bspc.2024.105987_b0080","doi-asserted-by":"crossref","unstructured":"J. Cheng, J. Liu, L. Liu, Y. Pan, J. Wang. (2019)Multi-level glioma segmentation using 3D U-Net combined attention mechanism with atrous convolution. In2019 ieee international conference on bioinformatics and biomedicine (BIBM) 7 :1031-1036.","DOI":"10.1109\/BIBM47256.2019.8983092"},{"key":"10.1016\/j.bspc.2024.105987_b0085","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2024.105987_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106268","article-title":"SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography","volume":"208","author":"Wang","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2024.105987_b0095","first-page":"480","article-title":"Prediction modeling with data fusion and prevention strategy analysis for the COVID-19 outbreak","volume":"41","author":"Tang","year":"2020","journal-title":"Zhonghua Liu Xing Bing Xue Za Zhi= Zhonghua Liuxingbingxue Zazhi"},{"key":"10.1016\/j.bspc.2024.105987_b0100","doi-asserted-by":"crossref","unstructured":"K. Li, L. Kong, Y. Zhang. (2020) 3D U-Net brain tumor segmentation using VAE skip connection. In2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), IEEE. 7:97-101).","DOI":"10.1109\/ICIVC50857.2020.9177441"},{"key":"10.1016\/j.bspc.2024.105987_b0105","unstructured":"S. Mastromichalakis. (2020) ALReLU: A different approach on Leaky ReLU activation function to improve Neural Networks Performance.arXiv preprint arXiv:2012.07564."},{"key":"10.1016\/j.bspc.2024.105987_b0110","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.semradonc.2022.06.002","article-title":"Automated tumor segmentation in radiotherapy","volume":"32","author":"Savjani","year":"2022","journal-title":"In Seminars in Radiation Oncology WB Sauders."},{"key":"10.1016\/j.bspc.2024.105987_b0115","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2024.105987_b0120","doi-asserted-by":"crossref","first-page":"22854","DOI":"10.1038\/s41598-021-01502-0","article-title":"Segmentation of infected region in CT images of COVID-19 patients based on QC-HC U-net","volume":"11","author":"Zhang","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.bspc.2024.105987_b0125","doi-asserted-by":"crossref","first-page":"632","DOI":"10.4283\/JMAG.2020.25.4.632","article-title":"Deeplab v3+ based automatic diagnosis model for dental x-ray: preliminary study","volume":"25","author":"Jung","year":"2020","journal-title":"Journal of Magnetics"},{"issue":"5","key":"10.1016\/j.bspc.2024.105987_b0130","first-page":"155","article-title":"A relative study on the segmentation techniques of image processing","volume":"4","author":"Veesam","year":"2017","journal-title":"International Journal of Computer Engineering in Research Trends"},{"key":"10.1016\/j.bspc.2024.105987_b0135","series-title":"Adaptive Moment Estimation to Minimize Square Error in Backpropagation Algorithm","first-page":"1","author":"Singarimbun","year":"2019"},{"key":"10.1016\/j.bspc.2024.105987_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.ibmed.2021.100034","article-title":"Optimal hyperparameter selection of deep learning models for COVID-19 chest X-ray classification","volume":"5","author":"Adedigba","year":"2021","journal-title":"Intelligence-Based Medicine"},{"key":"10.1016\/j.bspc.2024.105987_b0145","doi-asserted-by":"crossref","first-page":"1625","DOI":"10.1109\/TIP.2018.2877483","article-title":"DCSR: Dilated convolutions for single image super-resolution","volume":"28","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.bspc.2024.105987_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108021","article-title":"Visual attention dehazing network with multi-level features refinement and fusion","volume":"118","author":"Yin","year":"2021","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.bspc.2024.105987_b0155","doi-asserted-by":"crossref","unstructured":"A.W. Setiawan. (2020) Image segmentation metrics in skin lesion: accuracy, sensitivity, specificity, dice coefficient, Jaccard index, and Matthews correlation coefficient. In2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), IEEE. 97-102.","DOI":"10.1109\/CENIM51130.2020.9297970"},{"key":"10.1016\/j.bspc.2024.105987_b0160","series-title":"In Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","first-page":"9","article-title":"Jaccard Index in Ensemble Image Segmentation: An Approach","author":"Ogwok","year":"2022"},{"key":"10.1016\/j.bspc.2024.105987_b0165","doi-asserted-by":"crossref","first-page":"2153","DOI":"10.1109\/TPAMI.2015.2408351","article-title":"An efficient algorithm for calculating the exact Hausdorff distance","volume":"37","author":"Taha","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2024.105987_b0170","doi-asserted-by":"crossref","unstructured":"A. Pandey, A. Kumar. (2023). An integrated approach for breast cancer classification. multimedia tools and applications. Springer. DOI: 10.1007\/s11042-023-14782-7.","DOI":"10.1007\/s11042-023-14782-7"},{"key":"10.1016\/j.bspc.2024.105987_b0175","doi-asserted-by":"crossref","unstructured":"A. Pandey, A. Kumar. (2022, February). Deep features based automated multimodel system for classification of non-small cell lung cancer. In 2022 IEEE Delhi Section Conference (DELCON) (pp. 1-7). IEEE. DOI:10.1109\/DELCON54057.2022.9753643.","DOI":"10.1109\/DELCON54057.2022.9753643"},{"key":"10.1016\/j.bspc.2024.105987_b0180","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1007\/s00259-014-2961-x","article-title":"FDG PET\/CT: EANM procedure guidelines for tumour imaging: version 2.0","volume":"42","author":"Boellaard","year":"2015","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424000454?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809424000454?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,21]],"date-time":"2024-05-21T07:35:00Z","timestamp":1716276900000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809424000454"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":36,"alternative-id":["S1746809424000454"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2024.105987","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Enhancing non-small cell lung cancer radiotherapy planning: A deep learning-based multi-modal fusion approach for accurate GTV segmentation","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2024.105987","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105987"}}