{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T12:10:01Z","timestamp":1730549401447,"version":"3.28.0"},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.bspc.2023.105769","type":"journal-article","created":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T11:56:51Z","timestamp":1700567811000},"page":"105769","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["USL-Net: Uncertainty self-learning network for unsupervised skin lesion segmentation"],"prefix":"10.1016","volume":"89","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5011-6314","authenticated-orcid":false,"given":"Xiaofan","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8694-5106","authenticated-orcid":false,"given":"Bo","family":"Peng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0587-380X","authenticated-orcid":false,"given":"Jie","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Changyou","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Daipeng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Zhuyang","family":"Xie","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.105769_b1","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.neucom.2021.08.096","article-title":"Skin disease diagnosis with deep learning: A review","volume":"464","author":"Li","year":"2021","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.bspc.2023.105769_b2","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","article-title":"Fully convolutional networks for semantic segmentation","volume":"39","author":"Shelhamer","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.bspc.2023.105769_b3","series-title":"International Conference on Medical Image Computing and Computer Assisted Intervention","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.bspc.2023.105769_b4","doi-asserted-by":"crossref","unstructured":"Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Kilian Q. Weinberger, Densely Connected Convolutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261\u20132269.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.bspc.2023.105769_b5","article-title":"Cascaded context enhancement network for automatic skin lesion segmentation","volume":"201","author":"Ruxin","year":"2022","journal-title":"Expert Syst. Appl."},{"year":"2018","series-title":"Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model","author":"Li","key":"10.1016\/j.bspc.2023.105769_b6"},{"year":"2020","series-title":"A mutual bootstrapping model for automated skin lesion segmentation and classification","author":"Xie","key":"10.1016\/j.bspc.2023.105769_b7"},{"issue":"1","key":"10.1016\/j.bspc.2023.105769_b8","article-title":"VitSeg: Weakly supervised vitiligo segmentation in skin image","volume":"85","author":"Bian","year":"2020","journal-title":"Comput. Med. Imaging Graph.: Off. J. Comput. Med. Imaging Soc."},{"key":"10.1016\/j.bspc.2023.105769_b9","doi-asserted-by":"crossref","unstructured":"Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"10.1016\/j.bspc.2023.105769_b10","doi-asserted-by":"crossref","unstructured":"Soumaya Louhichi, Mariem Gzara, Han\u00e9ne Ben Abdallah, Skin Lesion Segmentation Using Multiple Density Clustering Algorithm MDCUT And Region Growing, in: 2018 IEEE\/ACIS 17th International Conference on Computer and Information Science (ICIS), 2018, pp. 74\u201379.","DOI":"10.1109\/ICIS.2018.8466531"},{"issue":"3","key":"10.1016\/j.bspc.2023.105769_b11","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.bspc.2008.02.003","article-title":"Automatic segmentation of skin lesion images using evolution strategies","volume":"3","author":"Yuan","year":"2008","journal-title":"Biomed. Signal Process. Control"},{"year":"2020","series-title":"A simple framework for contrastive learning of visual representations","author":"Chen","key":"10.1016\/j.bspc.2023.105769_b12"},{"year":"2020","series-title":"CO2: Consistent contrast for unsupervised visual representation learning","author":"Wei","key":"10.1016\/j.bspc.2023.105769_b13"},{"key":"10.1016\/j.bspc.2023.105769_b14","series-title":"ICMR \u201922","first-page":"677","article-title":"FreqCAM: Frequent class activation map for weakly supervised object localization","author":"Zhang","year":"2022"},{"year":"2018","series-title":"Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)","author":"Codella","key":"10.1016\/j.bspc.2023.105769_b15"},{"year":"2019","series-title":"Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)","author":"Codella","key":"10.1016\/j.bspc.2023.105769_b16"},{"key":"10.1016\/j.bspc.2023.105769_b17","doi-asserted-by":"crossref","unstructured":"Teresa Mendon\u00e7a, Pedro M. Ferreira, Jorge S. Marques, Andr\u00e9 R. S. Mar\u00e7al, Jorge Rozeira, PH2-A dermoscopic image database for research and benchmarking, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 5437\u20135440.","DOI":"10.1109\/EMBC.2013.6610779"},{"issue":"2","key":"10.1016\/j.bspc.2023.105769_b18","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1111\/srt.12252","article-title":"Biologically inspired skin lesion segmentation using a geodesic active contour technique","volume":"22","author":"Kasmi","year":"2016","journal-title":"Skin Res. Technol."},{"key":"10.1016\/j.bspc.2023.105769_b19","doi-asserted-by":"crossref","unstructured":"Chiranjeev Sagar, Lalit Mohan Saini, Color channel based segmentation of skin lesion from clinical images for the detection of melanoma, in: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1\u20135.","DOI":"10.1109\/ICPEICES.2016.7853624"},{"key":"10.1016\/j.bspc.2023.105769_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102839","article-title":"Segmentation of skin lesion images using discrete wavelet transform","volume":"69","author":"Ramya","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"issue":"9","key":"10.1016\/j.bspc.2023.105769_b21","doi-asserted-by":"crossref","first-page":"4679","DOI":"10.1109\/JBHI.2022.3187215","article-title":"Deep clustering via center-oriented margin free-triplet loss for skin lesion detection in highly imbalanced datasets","volume":"26","author":"\u00d6zt\u00fcrk","year":"2022","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.bspc.2023.105769_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.118938","article-title":"Content-based medical image retrieval with opponent class adaptive margin loss","volume":"637","author":"\u00d6zt\u00fcrk","year":"2023","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.bspc.2023.105769_b23","doi-asserted-by":"crossref","first-page":"958","DOI":"10.1007\/s10278-020-00343-z","article-title":"Skin lesion segmentation with improved convolutional neural network","volume":"33","author":"\u00d6zt\u00fcrk","year":"2020","journal-title":"J. Digit. Imaging: Off. J. Soc. Comput. Appl. Radiol."},{"key":"10.1016\/j.bspc.2023.105769_b24","unstructured":"Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770\u2013778."},{"key":"10.1016\/j.bspc.2023.105769_b25","doi-asserted-by":"crossref","unstructured":"Bill S. Lin, Kevin Michael, Shivam Kalra, H.R. Tizhoosh, Skin lesion segmentation: U-Nets versus clustering, in: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1\u20137.","DOI":"10.1109\/SSCI.2017.8280804"},{"key":"10.1016\/j.bspc.2023.105769_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117112","article-title":"AS-Net: Attention synergy network for skin lesion segmentation","volume":"201","author":"Hu","year":"2022","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.bspc.2023.105769_b27","doi-asserted-by":"crossref","first-page":"5","DOI":"10.26689\/jera.v5i3.2320","article-title":"Research on self-supervised comparative learning for computer vision","volume":"5","author":"Liu","year":"2021","journal-title":"J. Electron. Res. Appl.: JERA"},{"year":"2020","series-title":"Improved baselines with momentum contrastive learning","author":"Chen","key":"10.1016\/j.bspc.2023.105769_b28"},{"year":"2021","series-title":"An empirical study of training self-supervised vision transformers","author":"Chen","key":"10.1016\/j.bspc.2023.105769_b29"},{"year":"2021","series-title":"Emerging properties in self-supervised vision transformers","author":"Caron","key":"10.1016\/j.bspc.2023.105769_b30"},{"year":"2023","series-title":"DINOv2: Learning robust visual features without supervision","author":"Oquab","key":"10.1016\/j.bspc.2023.105769_b31"},{"key":"10.1016\/j.bspc.2023.105769_b32","doi-asserted-by":"crossref","unstructured":"Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Learning Deep Features for Discriminative Localization, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921\u20132929.","DOI":"10.1109\/CVPR.2016.319"},{"year":"2018","series-title":"Grad-CAM++: Improved visual explanations for deep convolutional networks","author":"Chattopadhyay","key":"10.1016\/j.bspc.2023.105769_b33"},{"year":"2019","series-title":"Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models","author":"Omeiza","key":"10.1016\/j.bspc.2023.105769_b34"},{"year":"2022","series-title":"Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation","author":"Xie","key":"10.1016\/j.bspc.2023.105769_b35"},{"key":"10.1016\/j.bspc.2023.105769_b36","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.media.2019.01.012","article-title":"Attention gated networks: Learning to leverage salient regions in medical images","volume":"53","author":"Schlemper","year":"2019","journal-title":"Med. Image Anal."},{"issue":"10","key":"10.1016\/j.bspc.2023.105769_b37","doi-asserted-by":"crossref","first-page":"2281","DOI":"10.1109\/TMI.2019.2903562","article-title":"CE-Net: Context encoder network for 2D medical image segmentation","volume":"38","author":"Gu","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.bspc.2023.105769_b38","doi-asserted-by":"crossref","first-page":"3008","DOI":"10.1109\/TMI.2020.2983721","article-title":"CPFNet: Context pyramid fusion network for medical image segmentation","volume":"39","author":"Feng","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"8","key":"10.1016\/j.bspc.2023.105769_b39","doi-asserted-by":"crossref","first-page":"2626","DOI":"10.1109\/TMI.2020.2996645","article-title":"Inf-Net: Automatic COVID-19 lung infection segmentation from CT images","volume":"39","author":"Fan","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.105769_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102196","article-title":"Dynamic-weighting hierarchical segmentation network for medical images.","volume":"73","author":"Guo","year":"2021","journal-title":"Med. Image Anal."},{"issue":"4","key":"10.1016\/j.bspc.2023.105769_b41","article-title":"PyDiNet: Pyramid dilated network for medical image segmentation","volume":"140","author":"Gridach","year":"2021","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.bspc.2023.105769_b42","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1109\/TMI.2020.3025308","article-title":"SESV: Accurate medical image segmentation by predicting and correcting errors","volume":"40","author":"Xie","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.105769_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102293","article-title":"Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation","volume":"75","author":"Dai","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.bspc.2023.105769_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107081","article-title":"EIU-Net: Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation","volume":"162","author":"Yu","year":"2023","journal-title":"Comput. Biol. Med."},{"year":"2023","series-title":"Unsupervised skin lesion segmentation via structural entropy minimization on multi-scale superpixel graphs","author":"Zeng","key":"10.1016\/j.bspc.2023.105769_b45"},{"year":"2018","series-title":"Automatic skin lesion segmentation on dermoscopic images by the means of superpixel merging","author":"Pati\u0144o","key":"10.1016\/j.bspc.2023.105769_b46"},{"year":"2023","series-title":"Unsupervised foreground extraction via deep region competition","author":"Yu","key":"10.1016\/j.bspc.2023.105769_b47"},{"journal-title":"Comput. Biol. Med.","article-title":"Saliency-cce: Exploiting colour contextual extractor and saliency-based biomedical image segmentation","year":"2023","author":"Zhou","key":"10.1016\/j.bspc.2023.105769_b48"},{"year":"2023","series-title":"Texture-guided saliency distilling for unsupervised salient object detection","author":"Zhou","key":"10.1016\/j.bspc.2023.105769_b49"},{"year":"2023","series-title":"Nearly-optimal hierarchical clustering for well-clustered graphs","author":"Laenen","key":"10.1016\/j.bspc.2023.105769_b50"},{"journal-title":"IEEE Comput. Soc.","article-title":"Normalized cuts and image segmentation","year":"1997","author":"Shi","key":"10.1016\/j.bspc.2023.105769_b51"},{"key":"10.1016\/j.bspc.2023.105769_b52","unstructured":"J. MacQueen, Some Methods for Classification and Analysis of Multivariate Observations, in: In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281\u2013297."},{"year":"2021","series-title":"A spatial guided self-supervised clustering network for medical image segmentation","author":"Ahn","key":"10.1016\/j.bspc.2023.105769_b53"},{"issue":"2","key":"10.1016\/j.bspc.2023.105769_b54","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1109\/JBHI.2018.2808970","article-title":"SDI+: A novel algorithm for segmenting dermoscopic images","volume":"23","author":"Guarracino","year":"2019","journal-title":"IEEE J. Biomed. Health Inf."},{"year":"2022","series-title":"Unsupervised domain adaptive salient object detection through uncertainty-aware pseudo-label learning","author":"Yan","key":"10.1016\/j.bspc.2023.105769_b55"},{"issue":"6","key":"10.1016\/j.bspc.2023.105769_b56","doi-asserted-by":"crossref","first-page":"1856","DOI":"10.1109\/TMI.2019.2959609","article-title":"UNet++: Redesigning skip connections to exploit multiscale features in image segmentation","volume":"39","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.105769_b57","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103762","article-title":"Automatic skin lesion segmentation based on FC-DPN","volume":"123","author":"Shan","year":"2020","journal-title":"Comput. Biol. Med."},{"year":"2018","series-title":"Attention U-net: Learning where to look for the pancreas","author":"Oktay","key":"10.1016\/j.bspc.2023.105769_b58"},{"year":"2018","series-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","key":"10.1016\/j.bspc.2023.105769_b59"},{"key":"10.1016\/j.bspc.2023.105769_b60","doi-asserted-by":"crossref","unstructured":"Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, Kuiyuan Yang, DenseASPP for Semantic Segmentation in Street Scenes, in: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3684\u20133692.","DOI":"10.1109\/CVPR.2018.00388"},{"year":"2019","series-title":"Bi-directional ConvLSTM U-Net with densley connected convolutions","author":"Azad","key":"10.1016\/j.bspc.2023.105769_b61"},{"year":"2019","series-title":"Divided we stand: A novel residual group attention mechanism for medical image segmentation","author":"Kaul","key":"10.1016\/j.bspc.2023.105769_b62"},{"issue":"2","key":"10.1016\/j.bspc.2023.105769_b63","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1109\/TMI.2020.3035253","article-title":"CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation","volume":"40","author":"Gu","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"year":"2020","series-title":"DONet: Dual objective networks for skin lesion segmentation","author":"Wang","key":"10.1016\/j.bspc.2023.105769_b64"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423012028?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423012028?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T11:50:46Z","timestamp":1730548246000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423012028"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":64,"alternative-id":["S1746809423012028"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105769","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"USL-Net: Uncertainty self-learning network for unsupervised skin lesion segmentation","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105769","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105769"}}