{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:35:38Z","timestamp":1740144938068,"version":"3.37.3"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62201618"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.bspc.2023.105753","type":"journal-article","created":{"date-parts":[[2023,11,17]],"date-time":"2023-11-17T01:49:30Z","timestamp":1700185770000},"page":"105753","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Unsupervised metal artifacts reduction network for CT images based on efficient transformer"],"prefix":"10.1016","volume":"89","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8932-9758","authenticated-orcid":false,"given":"Linlin","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Yu","family":"Han","sequence":"additional","affiliation":[]},{"given":"Xiaoqi","family":"Xi","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Mengnan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Huijuan","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Siyu","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Yan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.bspc.2023.105753_b1","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1146\/annurev-bioeng-121813-113601","article-title":"Advances in computed tomography imaging technology","volume":"16","author":"Ginat","year":"2014","journal-title":"Annu. Rev. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.bspc.2023.105753_b2","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TMI.2020.3025064","article-title":"Deep sinogram completion with image prior for metal artifact reduction in CT images","volume":"40","author":"Yu","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.bspc.2023.105753_b3","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1148\/radiology.164.2.3602406","article-title":"Reduction of CT artifacts caused by metallic implants","volume":"164","author":"Kalender","year":"1987","journal-title":"Radiology"},{"key":"10.1016\/j.bspc.2023.105753_b4","doi-asserted-by":"crossref","first-page":"5867","DOI":"10.1118\/1.3505294","article-title":"Sinogram preprocessing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT)","volume":"37","author":"Meng","year":"2010","journal-title":"Med. Phys."},{"issue":"12","key":"10.1016\/j.bspc.2023.105753_b5","doi-asserted-by":"crossref","first-page":"5376","DOI":"10.1002\/mp.13199","article-title":"CT sinogram-consistency learning for metal-induced beam hardening correction","volume":"45","author":"Park","year":"2018","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.105753_b6","doi-asserted-by":"crossref","first-page":"5826","DOI":"10.1109\/ACCESS.2016.2608621","article-title":"Metal artifact reduction in CT: Where are we after four decades?","volume":"4","author":"Gjesteby","year":"2016","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.bspc.2023.105753_b7","doi-asserted-by":"crossref","first-page":"1047","DOI":"10.1088\/0031-9155\/60\/3\/1047","article-title":"An evaluation of three commercially available metal artifact reduction methods for CT imaging","volume":"60","author":"Huang","year":"2015","journal-title":"Phys. Med. Biol."},{"issue":"10","key":"10.1016\/j.bspc.2023.105753_b8","doi-asserted-by":"crossref","first-page":"5482","DOI":"10.1118\/1.3484090","article-title":"Normalized metal artifact reduction (NMAR) in computed tomography","volume":"37","author":"Meyer","year":"2010","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.105753_b9","series-title":"Spurious structures created by interpolation-based CT metal artifact reduction","first-page":"72581Y","author":"M\u00fcller","year":"2009"},{"issue":"21","key":"10.1016\/j.bspc.2023.105753_b10","doi-asserted-by":"crossref","first-page":"6575","DOI":"10.1088\/0031-9155\/54\/21\/009","article-title":"A novel forward projection-based metal artifact reduction method for flat-detector computed tomography","volume":"54","author":"Prell","year":"2009","journal-title":"Phys. Med. Biol."},{"issue":"8","key":"10.1016\/j.bspc.2023.105753_b11","doi-asserted-by":"crossref","DOI":"10.1118\/1.4812424","article-title":"Metal artifact reduction in CT using fusion based prior image","volume":"40","author":"Wang","year":"2013","journal-title":"Med. Phys."},{"issue":"4","key":"10.1016\/j.bspc.2023.105753_b12","doi-asserted-by":"crossref","DOI":"10.1118\/1.4794474","article-title":"A hybrid metal artifact reduction algorithm for X-Ray CT","volume":"40","author":"Zhang","year":"2013","journal-title":"Med. Phys."},{"issue":"12","key":"10.1016\/j.bspc.2023.105753_b13","doi-asserted-by":"crossref","DOI":"10.1118\/1.4901553","article-title":"Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers: Moving metal artifact reduction in cone-beam CT scans","volume":"41","author":"Toftegaard","year":"2014","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.105753_b14","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/0022-5193(70)90109-8","article-title":"Algebraic reconstruction technique (ART) for three-dimensional electron microscopy and X-Ray photography","volume":"29","author":"Gordon","year":"1971","journal-title":"J. Theoret. Biol."},{"key":"10.1016\/j.bspc.2023.105753_b15","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1177\/016173468400600107","article-title":"Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm","volume":"6","author":"Andersen","year":"1984","journal-title":"Ultrason. Imaging"},{"issue":"3","key":"10.1016\/j.bspc.2023.105753_b16","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1148\/radiol.11101782","article-title":"Evaluation of two iterative techniques for reducing metal artifacts in computed tomography","volume":"259","author":"Boas","year":"2011","journal-title":"Radiology"},{"issue":"2","key":"10.1016\/j.bspc.2023.105753_b17","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1109\/TMI.1982.4307558","article-title":"Maximum likelihood reconstruction for emission tomography","volume":"1","author":"Shepp","year":"1982","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.bspc.2023.105753_b18","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1097\/00004728-199703000-00024","article-title":"Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction:","volume":"21","author":"Robertson","year":"1997","journal-title":"J. Comput. Assist. Tomogr."},{"issue":"7","key":"10.1016\/j.bspc.2023.105753_b19","doi-asserted-by":"crossref","first-page":"1835","DOI":"10.1088\/0031-9155\/46\/7\/307","article-title":"Ordered subset reconstruction for X-Ray CT","volume":"46","author":"Beekman","year":"2001","journal-title":"Phys. Med. Biol."},{"issue":"11","key":"10.1016\/j.bspc.2023.105753_b20","doi-asserted-by":"crossref","first-page":"7080","DOI":"10.1118\/1.4762567","article-title":"Metal artifact reduction in computed tomography using local models in an image block-iterative scheme: Local models for metal artifact reduction in CT","volume":"39","author":"Van Slambrouck","year":"2012","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.105753_b21","series-title":"Medical Imaging 2017: Physics of Medical Imaging. International Society for Optics and Photonics, vol. 10132","first-page":"101322W","article-title":"Deep learning methods to guide CT image reconstruction and reduce metal artifacts","author":"Gjesteby","year":"2017"},{"key":"10.1016\/j.bspc.2023.105753_b22","series-title":"Fully3D 2017 Proceedings","first-page":"631","article-title":"Metal-Artifact reduction using deep-learning based sinogram completion: Initial results","author":"Claus","year":"2017"},{"year":"2017","series-title":"Machine-learning-based nonlinear decomposition of CT images for metal artifact reduction","author":"Park","key":"10.1016\/j.bspc.2023.105753_b23"},{"key":"10.1016\/j.bspc.2023.105753_b24","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/TCI.2019.2937221","article-title":"Fast enhanced CT metal artifact reduction using data domain deep learning","volume":"6","author":"Ghani","year":"2020","journal-title":"IEEE Trans. Comput. Imaging"},{"issue":"24","key":"10.1016\/j.bspc.2023.105753_b25","doi-asserted-by":"crossref","first-page":"8164","DOI":"10.3390\/s21248164","article-title":"Completion of metal-damaged traces based on deep learning in sinogram domain for metal artifacts reduction in CT images","volume":"21","author":"Zhu","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.105753_b26","series-title":"2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"10504","article-title":"DuDoNet: Dual domain network for CT metal artifact reduction","author":"Lin","year":"2019"},{"issue":"15","key":"10.1016\/j.bspc.2023.105753_b27","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ac1156","article-title":"DAN-net: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction","volume":"66","author":"Wang","year":"2021","journal-title":"Phys. Med. Biol."},{"year":"2021","series-title":"InDuDoNet: An interpretable dual domain network for CT metal artifact reduction","author":"Wang","key":"10.1016\/j.bspc.2023.105753_b28"},{"key":"10.1016\/j.bspc.2023.105753_b29","first-page":"1","article-title":"IDOL-net: An interactive dual-domain parallel network for ct metal artifact reduction","author":"Wang","year":"2022","journal-title":"IEEE Trans. Radiat. Plasma Med. Sci."},{"year":"2020","series-title":"Low-dimensional manifold constrained disentanglement network for metal artifact reduction","author":"Niu","key":"10.1016\/j.bspc.2023.105753_b30"},{"key":"10.1016\/j.bspc.2023.105753_b31","series-title":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"1","article-title":"Stay in the middle: A semi-supervised model for CT metal artifact reduction","author":"Wang","year":"2023"},{"key":"10.1016\/j.bspc.2023.105753_b32","doi-asserted-by":"crossref","DOI":"10.1002\/mp.15633","article-title":"A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction","author":"Shi","year":"2022","journal-title":"Med. Phys."},{"issue":"3","key":"10.1016\/j.bspc.2023.105753_b33","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1109\/TMI.2019.2933425","article-title":"ADN: Artifact disentanglement network for unsupervised metal artifact reduction","volume":"39","author":"Liao","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.105753_b34","doi-asserted-by":"crossref","first-page":"109453","DOI":"10.1109\/ACCESS.2020.3002090","article-title":"Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and Neck CT Images","volume":"8","author":"Nakao","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2023.105753_b35","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV)","first-page":"2242","article-title":"Unpaired image-to-image translation using cycle-consistent adversarial networks","author":"Zhu","year":"2017"},{"issue":"12","key":"10.1016\/j.bspc.2023.105753_b36","doi-asserted-by":"crossref","first-page":"3932","DOI":"10.1109\/TMI.2021.3101363","article-title":"Unsupervised CT metal artifact learning using attention-guided \u03b2 -CycleGAN","volume":"40","author":"Lee","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.105753_b37","series-title":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"2400","article-title":"Attention-embedded decomposed network with unpaired CT images prior for metal artifact reduction","author":"Zhao","year":"2021"},{"key":"10.1016\/j.bspc.2023.105753_b38","series-title":"Advances in Neural Information Processing Systems, Vol. 29","article-title":"Understanding the effective receptive field in deep convolutional neural networks","author":"Luo","year":"2016"},{"key":"10.1016\/j.bspc.2023.105753_b39","series-title":"Advances in Neural Information Processing Systems, Vol. 30","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.bspc.2023.105753_b40","series-title":"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations","first-page":"38","article-title":"Transformers: State-of-the-art natural language processing","author":"Wolf","year":"2020"},{"key":"10.1016\/j.bspc.2023.105753_b41","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV)","first-page":"7262","article-title":"Segmenter: Transformer for semantic segmentation","author":"Strudel","year":"2021"},{"key":"10.1016\/j.bspc.2023.105753_b42","series-title":"International Conference on Learning Representations","article-title":"An image is worth 16x16 words: Transformers for image recognition at scale","author":"Dosovitskiy","year":"2021"},{"year":"2018","series-title":"The relativistic discriminator: A key element missing from standard GAN","author":"Jolicoeur-Martineau","key":"10.1016\/j.bspc.2023.105753_b43"},{"key":"10.1016\/j.bspc.2023.105753_b44","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1117\/1.JMI.5.3.036501","article-title":"DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning","volume":"5","author":"Yan","year":"2018","journal-title":"J. Med. Imaging"},{"issue":"2","key":"10.1016\/j.bspc.2023.105753_b45","doi-asserted-by":"crossref","first-page":"305","DOI":"10.2307\/3578630","article-title":"Phantoms and computational models in Therapy, Diagnosis and Protection","volume":"136","author":"Wagner","year":"1993","journal-title":"Radiat. Res."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423011862?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423011862?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,23]],"date-time":"2024-01-23T22:07:08Z","timestamp":1706047628000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423011862"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":45,"alternative-id":["S1746809423011862"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105753","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised metal artifacts reduction network for CT images based on efficient transformer","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105753","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105753"}}