{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:03:39Z","timestamp":1732043019324},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.bspc.2023.105446","type":"journal-article","created":{"date-parts":[[2023,9,15]],"date-time":"2023-09-15T19:19:55Z","timestamp":1694805595000},"page":"105446","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"PA","title":["ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease"],"prefix":"10.1016","volume":"87","author":[{"given":"S","family":"Balasubramaniam","sequence":"first","affiliation":[]},{"given":"C","family":"Vijesh Joe","sequence":"additional","affiliation":[]},{"given":"Chinnadurai","family":"Manthiramoorthy","sequence":"additional","affiliation":[]},{"given":"K","family":"Satheesh Kumar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.bspc.2023.105446_b0005","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s12530-019-09312-6","article-title":"Heart disease detection using hybrid of bacterial foraging and particle swarm optimization","volume":"11","author":"Kora","year":"2020","journal-title":"Evol. Syst."},{"issue":"2","key":"10.1016\/j.bspc.2023.105446_b0010","first-page":"31","article-title":"A prediction technique for heart disease based on long Short term memory recurrent neural network","volume":"13","author":"Manur","year":"2020","journal-title":"Int. J. Intell. Eng. Syst."},{"issue":"7","key":"10.1016\/j.bspc.2023.105446_b0015","first-page":"4514","article-title":"An optimized XGBoost based diagnostic system for effective prediction of heart disease","volume":"34","author":"Budholiya","year":"2022","journal-title":"J. King Saud Univ. Comput. Inform. Sci."},{"key":"10.1016\/j.bspc.2023.105446_b0020","first-page":"1","article-title":"\u201cAccurate prediction of heart disease based on bio system using regressive learning based neural network classifier\u201d","author":"Oliver","year":"2021","journal-title":"J. Amb. Intell. Human. Comput."},{"key":"10.1016\/j.bspc.2023.105446_b0025","doi-asserted-by":"crossref","unstructured":"J. Rodr\u00edguez, S. Prieto, L.J.R. L\u00f3pez. \u201cA novel heart rate attractor for the prediction of cardiovascular disease\u201d, Informatics in medicine UNLOCKED, vol.15 (2019), pp.100174.","DOI":"10.1016\/j.imu.2019.100174"},{"key":"10.1016\/j.bspc.2023.105446_b0030","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.csbj.2016.12.005","article-title":"Machine learning and data mining methods in diabetes research","volume":"15","author":"Kavakiotis","year":"2017","journal-title":"Comput. Struct. Biotechnol. J."},{"key":"10.1016\/j.bspc.2023.105446_b0035","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.compeleceng.2017.08.005","article-title":"An improved Id3 algorithm for medical data classification","volume":"65","author":"Yang","year":"2018","journal-title":"Comput. Electr. Eng."},{"issue":"5","key":"10.1016\/j.bspc.2023.105446_b0040","first-page":"272","article-title":"Modeling and design of evolutionary neural network for heart disease detection","volume":"7","author":"Kavitha","year":"2010","journal-title":"Int. J. Comput. Sci. Issues (IJCSI)"},{"issue":"4","key":"10.1016\/j.bspc.2023.105446_b0045","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1145\/141874.141884","article-title":"Foundations for the study of software architecture","volume":"17","author":"Perry","year":"1992","journal-title":"ACM SIGSOFT Software engineering notes"},{"key":"10.1016\/j.bspc.2023.105446_b0050","doi-asserted-by":"crossref","unstructured":"J. Premsmith, H. Ketmaneechairat. \u201cA predictive model for heart disease detection using data mining techniques\u201d, Journal of advances in Information Technology, vol.12, no.1, 2021.","DOI":"10.12720\/jait.12.1.14-20"},{"key":"10.1016\/j.bspc.2023.105446_b0055","doi-asserted-by":"crossref","unstructured":"A. Jain, M. Ahirwar, R. Pandey, \u201cA review on intutive prediction of heart disease using data mining techniques\u201d, International Journal of Computer Sciences and Engineering, 2019.","DOI":"10.26438\/ijcse\/v7i7.109113"},{"key":"10.1016\/j.bspc.2023.105446_b0060","doi-asserted-by":"crossref","first-page":"111","DOI":"10.3991\/ijoe.v17i10.24499","article-title":"A Novel Approach for Parkinson\u2019s Disease Detection Based on Voice Classification and Features Selection Techniques","volume":"17","author":"Ouhmida","year":"2021","journal-title":"Int. J. Online Eng"},{"key":"10.1016\/j.bspc.2023.105446_b0065","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/6291968","article-title":"An improved squirrel search algorithm for optimization","volume":"2019","author":"Zheng","year":"2019","journal-title":"Complexity"},{"key":"10.1016\/j.bspc.2023.105446_b0070","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.neucom.2017.05.103","article-title":"Improving deep neural networks with multi-layer maxout networks and a novel initialization method","volume":"278","author":"Sun","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.bspc.2023.105446_b0075","unstructured":"Gradient descent optimization (GDO) taken from \u201chttps:\/\/towardsdatascience.com\/gradient-descent-algorithm-a-deep-dive-cf04e8115f21\u201d."},{"key":"10.1016\/j.bspc.2023.105446_b0080","unstructured":"Heart Disease Data Set taken from, \u201chttps:\/\/archive.ics.uci.edu\/ml\/datasets\/heart+Disease\u201d, accessed on March 2023."},{"key":"10.1016\/j.bspc.2023.105446_b0085","doi-asserted-by":"crossref","unstructured":"Sesham Anand, \u201cArchimedes Optimization Algorithm: Heart Disease Prediction\u201d, Multimedia Research, vol.4, no.3, 2021.","DOI":"10.46253\/j.mr.v4i3.a4"},{"key":"10.1016\/j.bspc.2023.105446_b0090","unstructured":"Log Scaling is taken from, \u201chttps:\/\/developers.google.com\/machine-learning\/data-prep\/transform\/normalization\u201d, accessed on March 2023."},{"key":"10.1016\/j.bspc.2023.105446_b0095","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2022\/2819378","article-title":"Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection","author":"Balasubramaniam","year":"2022","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.bspc.2023.105446_b0100","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104392","article-title":"Optimal Ensemble learning model for COVID-19 detection using chest X-ray images","volume":"81","author":"Balasubramaniam","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"issue":"6","key":"10.1016\/j.bspc.2023.105446_b0105","doi-asserted-by":"crossref","first-page":"8049","DOI":"10.1007\/s11042-022-13195-2","article-title":"Automated classification of multi-class sleep stages classification using polysomnography signals: a nine-layer 1D-convolution neural network approach","volume":"82","author":"Satapathy","year":"2023","journal-title":"Multimed. Tools Appl."},{"issue":"4","key":"10.1016\/j.bspc.2023.105446_b0110","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1007\/s42979-022-01156-3","article-title":"Multimodal multiclass machine learning model for automated sleep staging based on time series data","volume":"3","author":"Satapathy","year":"2022","journal-title":"SN Computer Science"},{"issue":"24","key":"10.1016\/j.bspc.2023.105446_b0115","doi-asserted-by":"crossref","first-page":"15445","DOI":"10.1007\/s00500-021-06218-x","article-title":"Prognosis of automated sleep staging based on two-layer ensemble learning stacking model using single-channel EEG signal","volume":"25","author":"Satapathy","year":"2021","journal-title":"Soft. Comput."},{"key":"10.1016\/j.bspc.2023.105446_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102898","article-title":"Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal","volume":"69","author":"Satapathy","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"issue":"2","key":"10.1016\/j.bspc.2023.105446_b0125","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1049\/cit2.12042","article-title":"Performance analysis of machine learning algorithms on automated sleep staging feature sets","volume":"6","author":"Satapathy","year":"2021","journal-title":"CAAI Trans. Intell. Technol."},{"issue":"16","key":"10.1016\/j.bspc.2023.105446_b0130","first-page":"15","article-title":"A survey on data retrieval techniques in cloud computing","volume":"8","author":"Balasubramaniam","year":"2013","journal-title":"J. Converg. Inf. Technol."},{"key":"10.1016\/j.bspc.2023.105446_b0135","doi-asserted-by":"crossref","unstructured":"S. Balasubramaniam, C. Vijesh Joe, T. A. Sivakumar, A. Prasanth, K. Satheesh Kumar, V. Kavitha, Rajesh Kumar Dhanaraj, \u201cOptimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing\u201d, International Journal of Intelligent Systems, vol. 2023, Article ID 2039217, 16 pages, 2023.","DOI":"10.1155\/2023\/2039217"},{"issue":"9","key":"10.1016\/j.bspc.2023.105446_b0140","first-page":"494","article-title":"A survey on data encryption tecniques in cloud computing","volume":"13","author":"Balasubramaniam","year":"2014","journal-title":"Asian J. Inf. Technol."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423008790?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423008790?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T03:31:22Z","timestamp":1697254282000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423008790"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":28,"alternative-id":["S1746809423008790"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105446","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105446","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105446"}}