{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,31]],"date-time":"2025-03-31T01:12:41Z","timestamp":1743383561697},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.bspc.2023.105272","type":"journal-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T20:12:36Z","timestamp":1690402356000},"page":"105272","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"PC","title":["NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals"],"prefix":"10.1016","volume":"86","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5035-2114","authenticated-orcid":false,"given":"Samiul Based","family":"Shuvo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3742-6692","authenticated-orcid":false,"given":"Syed Samiul","family":"Alam","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9545-0132","authenticated-orcid":false,"given":"Syeda Umme","family":"Ayman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5922-4410","authenticated-orcid":false,"given":"Arbil","family":"Chakma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5117-8333","authenticated-orcid":false,"given":"Prabal Datta","family":"Barua","sequence":"additional","affiliation":[]},{"given":"U Rajendra","family":"Acharya","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.105272_b1","unstructured":"CVD causes one-third of deaths worldwide: Study examines global burden of CVD from 1990 to 2015 - American college of cardiology. URL https:\/\/www.who.int\/en\/news-room\/fact-sheets\/detail\/cardiovascular-diseases-(cvds)."},{"issue":"6","key":"10.1016\/j.bspc.2023.105272_b2","doi-asserted-by":"crossref","first-page":"e748","DOI":"10.1016\/S2214-109X(19)30045-2","article-title":"Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: the prospective urban rural epidemiologic (PURE) study","volume":"7","author":"Rosengren","year":"2019","journal-title":"Lancet Glob. Health"},{"key":"10.1016\/j.bspc.2023.105272_b3","first-page":"1","article-title":"Automated heart sound activity detection from PCG signal using time\u2013frequency-domain deep neural network","volume":"71","author":"Ghosh","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.bspc.2023.105272_b4","doi-asserted-by":"crossref","first-page":"160882","DOI":"10.1109\/ACCESS.2020.3020806","article-title":"Time-frequency analysis, denoising, compression, segmentation, and classification of PCG signals","volume":"8","author":"Chowdhury","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2023.105272_b5","doi-asserted-by":"crossref","first-page":"8316","DOI":"10.1109\/ACCESS.2018.2889437","article-title":"Algorithms for automatic analysis and classification of heart sounds\u2013a systematic review","volume":"7","author":"Dwivedi","year":"2018","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.bspc.2023.105272_b6","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1080\/03091902.2016.1209589","article-title":"Heart sound and lung sound separation algorithms: a review","volume":"41","author":"Nersisson","year":"2017","journal-title":"J. Med. Eng. Technol."},{"key":"10.1016\/j.bspc.2023.105272_b7","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.compbiomed.2014.06.011","article-title":"Wavelet-based denoising method for real phonocardiography signal recorded by mobile devices in noisy environment","volume":"52","author":"Gradolewski","year":"2014","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.105272_b8","series-title":"The PASCAL classifying heart sounds challenge 2011","author":"Bentley","year":"2011"},{"issue":"12","key":"10.1016\/j.bspc.2023.105272_b9","doi-asserted-by":"crossref","first-page":"2344","DOI":"10.3390\/app8122344","article-title":"Classification of heart sound signal using multiple features","volume":"8","author":"Son","year":"2018","journal-title":"Appl. Sci."},{"issue":"12","key":"10.1016\/j.bspc.2023.105272_b10","doi-asserted-by":"crossref","first-page":"2181","DOI":"10.1088\/0967-3334\/37\/12\/2181","article-title":"An open access database for the evaluation of heart sound algorithms","volume":"37","author":"Liu","year":"2016","journal-title":"Physiol. Meas."},{"issue":"8","key":"10.1016\/j.bspc.2023.105272_b11","doi-asserted-by":"crossref","first-page":"1631","DOI":"10.1088\/1361-6579\/aa7982","article-title":"Ensemble methods with outliers for phonocardiogram classification","volume":"38","author":"Homsi","year":"2017","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.bspc.2023.105272_b12","series-title":"2016 Computing in Cardiology Conference (CinC)","first-page":"813","article-title":"Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients","author":"Rubin","year":"2016"},{"issue":"1","key":"10.1016\/j.bspc.2023.105272_b13","doi-asserted-by":"crossref","first-page":"45","DOI":"10.3390\/bioengineering10010045","article-title":"An optimal approach for heart sound classification using grid search in hyperparameter optimization of machine learning","volume":"10","author":"Fuadah","year":"2022","journal-title":"Bioengineering"},{"key":"10.1016\/j.bspc.2023.105272_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.bea.2022.100048","article-title":"Multi-classification neural network model for detection of abnormal heartbeat audio signals","volume":"4","author":"Malik","year":"2022","journal-title":"Biomed. Eng. Adv."},{"key":"10.1016\/j.bspc.2023.105272_b15","series-title":"ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"1318","article-title":"Short-segment heart sound classification using an ensemble of deep convolutional neural networks","author":"Noman","year":"2019"},{"issue":"3","key":"10.1016\/j.bspc.2023.105272_b16","first-page":"86","article-title":"Transfer learning models for detecting six categories of phonocardiogram recordings","volume":"9","author":"Wang","year":"2022","journal-title":"J. Cardiovasc. Dev. Dis."},{"issue":"8","key":"10.1016\/j.bspc.2023.105272_b17","doi-asserted-by":"crossref","first-page":"1645","DOI":"10.1088\/1361-6579\/aa6a3d","article-title":"DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds","volume":"38","author":"Kay","year":"2017","journal-title":"Physiol. Meas."},{"issue":"8","key":"10.1016\/j.bspc.2023.105272_b18","doi-asserted-by":"crossref","first-page":"1701","DOI":"10.1088\/1361-6579\/aa7623","article-title":"Combining sparse coding and time-domain features for heart sound classification","volume":"38","author":"Whitaker","year":"2017","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.bspc.2023.105272_b19","article-title":"Exploring the impact of noise and degradations on heart sound classification models","volume":"85","author":"Panah","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.105272_b20","series-title":"2016 Computing in Cardiology Conference (CinC)","first-page":"613","article-title":"Heart sound anomaly and quality detection using ensemble of neural networks without segmentation","author":"Zabihi","year":"2016"},{"key":"10.1016\/j.bspc.2023.105272_b21","series-title":"2016 Computing in Cardiology Conference (CinC)","first-page":"569","article-title":"Classification of acoustic physiological signals based on deep learning neural networks with augmented features","author":"Yang","year":"2016"},{"key":"10.1016\/j.bspc.2023.105272_b22","series-title":"2016 Computing in Cardiology Conference (CinC)","first-page":"621","article-title":"Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds","author":"Potes","year":"2016"},{"issue":"8","key":"10.1016\/j.bspc.2023.105272_b23","doi-asserted-by":"crossref","first-page":"2189","DOI":"10.1109\/JBHI.2020.2970252","article-title":"Towards domain invariant heart sound abnormality detection using learnable filterbanks","volume":"24","author":"Humayun","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"8","key":"10.1016\/j.bspc.2023.105272_b24","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1088\/1361-6579\/aa7841","article-title":"Recognition of normal\u2013abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients","volume":"38","author":"Maknickas","year":"2017","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.bspc.2023.105272_b25","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"1408","article-title":"Learning front-end filter-bank parameters using convolutional neural networks for abnormal heart sound detection","author":"Humayun","year":"2018"},{"key":"10.1016\/j.bspc.2023.105272_b26","series-title":"An ensemble of transfer, semi-supervised and supervised learning methods for pathological heart sound classification","author":"Humayun","year":"2018"},{"issue":"12","key":"10.1016\/j.bspc.2023.105272_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LSENS.2020.3039366","article-title":"Heart sound multiclass analysis based on raw data and convolutional neural network","volume":"4","author":"Avanzato","year":"2020","journal-title":"IEEE Sens. Lett."},{"key":"10.1016\/j.bspc.2023.105272_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2022.102417","article-title":"Cardiac anomaly detection considering an additive noise and convolutional distortion model of heart sound recordings","volume":"133","author":"Azam","year":"2022","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.bspc.2023.105272_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103864","article-title":"Hilbert-envelope features for cardiac disease classification from noisy phonocardiograms","volume":"78","author":"Nizam","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"issue":"2","key":"10.1016\/j.bspc.2023.105272_b30","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1097\/01.CNQ.0000264260.20994.36","article-title":"Practical cardiac auscultation","volume":"30","author":"Shindler","year":"2007","journal-title":"Crit. Care Nurs. Q."},{"key":"10.1016\/j.bspc.2023.105272_b31","series-title":"The Art and Science of Cardiac Physical Examination: With Heart Sounds and Pulse Wave Forms on CD","author":"Ranganathan","year":"2007"},{"issue":"7","key":"10.1016\/j.bspc.2023.105272_b32","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1080\/03091902.2019.1688408","article-title":"Towards classifying non-segmented heart sound records using instantaneous frequency based features","volume":"43","author":"Alqudah","year":"2019","journal-title":"J. Med. Eng. Technol."},{"key":"10.1016\/j.bspc.2023.105272_b33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13721-020-00272-5","article-title":"Classification of heart sound short records using bispectrum analysis approach images and deep learning","volume":"9","author":"Alqudah","year":"2020","journal-title":"Netw. Model. Anal. Health Inform. Bioinform."},{"key":"10.1016\/j.bspc.2023.105272_b34","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/8843963","article-title":"Deep layer kernel sparse representation network for the detection of heart valve ailments from the time-frequency representation of PCG recordings","author":"Ghosh","year":"2020","journal-title":"BioMed Res. Int."},{"key":"10.1016\/j.bspc.2023.105272_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105604","article-title":"Classification of heart sound signals using a novel deep WaveNet model","volume":"196","author":"Oh","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2023.105272_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105750","article-title":"Automatic diagnosis of multiple cardiac diseases from PCG signals using convolutional neural network","volume":"197","author":"Baghel","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2023.105272_b37","first-page":"1","article-title":"Detection of heart valve disorders from PCG signals using TQWT, FA-MVEMD, Shannon energy envelope and deterministic learning","author":"Zeng","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.bspc.2023.105272_b38","doi-asserted-by":"crossref","first-page":"36955","DOI":"10.1109\/ACCESS.2021.3063129","article-title":"CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings","volume":"9","author":"Shuvo","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2023.105272_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.105940","article-title":"Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings","volume":"200","author":"Alkhodari","year":"2021","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2023.105272_b40","article-title":"Novel three kernelled binary pattern feature extractor based automated PCG sound classification method","volume":"179","author":"Kobat","year":"2021","journal-title":"Appl. Acoust."},{"issue":"1","key":"10.1016\/j.bspc.2023.105272_b41","doi-asserted-by":"crossref","first-page":"14297","DOI":"10.1038\/s41598-022-18293-7","article-title":"A lightweight hybrid deep learning system for cardiac valvular disease classification","volume":"12","author":"Al-Issa","year":"2022","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.bspc.2023.105272_b42","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1007\/s00034-022-02124-1","article-title":"Heart sound classification using deep learning techniques based on log-mel spectrogram","volume":"42","author":"Nguyen","year":"2023","journal-title":"Circuits Systems Signal Process."},{"key":"10.1016\/j.bspc.2023.105272_b43","doi-asserted-by":"crossref","DOI":"10.1155\/2023\/7382316","article-title":"A computer-aided heart valve disease diagnosis system based on machine learning","volume":"2023","author":"Ding","year":"2023","journal-title":"J. Healthc. Eng."},{"key":"10.1016\/j.bspc.2023.105272_b44","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2023.3274174","article-title":"Explainable deep convolutional neural network for valvular heart diseases classification using PCG signals","author":"Bhardwaj","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"10","key":"10.1016\/j.bspc.2023.105272_b45","doi-asserted-by":"crossref","first-page":"2221","DOI":"10.3390\/electronics12102221","article-title":"Assisting heart valve diseases diagnosis via transformer-based classification of heart sound signals","volume":"12","author":"Yang","year":"2023","journal-title":"Electronics"},{"key":"10.1016\/j.bspc.2023.105272_b46","series-title":"ICBHI 2017 challenge","year":"2017"},{"key":"10.1016\/j.bspc.2023.105272_b47","series-title":"Precision Medicine Powered By PHealth and Connected Health: ICBHI 2017, Thessaloniki, Greece, 18-21 November 2017","first-page":"33","article-title":"A respiratory sound database for the development of automated classification","author":"Rocha","year":"2018"},{"issue":"4","key":"10.1016\/j.bspc.2023.105272_b48","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1088\/0967-3334\/31\/4\/004","article-title":"Segmentation of heart sound recordings by a duration-dependent hidden Markov model","volume":"31","author":"Schmidt","year":"2010","journal-title":"Physiol. Meas."},{"issue":"21","key":"10.1016\/j.bspc.2023.105272_b49","doi-asserted-by":"crossref","first-page":"4819","DOI":"10.3390\/s19214819","article-title":"Heartbeat sound signal classification using deep learning","volume":"19","author":"Raza","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.105272_b50","first-page":"CCRPM","article-title":"Analysis of respiratory sounds: state of the art","volume":"2","author":"Reichert","year":"2008","journal-title":"Clin. Med. Circul. Respir. Pulmon. Med."},{"key":"10.1016\/j.bspc.2023.105272_b51","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"409","article-title":"Fundamental heart sound classification using the continuous wavelet transform and convolutional neural networks","author":"Meintjes","year":"2018"},{"issue":"4","key":"10.1016\/j.bspc.2023.105272_b52","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1080\/0309190031000111362","article-title":"Analysis of the second heart sound using continuous wavelet transform","volume":"28","author":"Debbal","year":"2004","journal-title":"J. Med. Eng. Technol."},{"issue":"3","key":"10.1016\/j.bspc.2023.105272_b53","first-page":"245","article-title":"Wavelet scalogram analysis of phonopulmonographic signals","volume":"5","author":"Gautam","year":"2013","journal-title":"Int. J. Med. Eng. Inform."},{"issue":"7","key":"10.1016\/j.bspc.2023.105272_b54","doi-asserted-by":"crossref","first-page":"2595","DOI":"10.1109\/JBHI.2020.3048006","article-title":"A lightweight cnn model for detecting respiratory diseases from lung auscultation sounds using emd-cwt-based hybrid scalogram","volume":"25","author":"Shuvo","year":"2020","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"4","key":"10.1016\/j.bspc.2023.105272_b55","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/TASSP.1980.1163420","article-title":"Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences","volume":"28","author":"Davis","year":"1980","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"13","key":"10.1016\/j.bspc.2023.105272_b56","doi-asserted-by":"crossref","first-page":"2854","DOI":"10.3390\/s19132854","article-title":"Motor imagery EEG classification using capsule networks","volume":"19","author":"Ha","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.105272_b57","series-title":"Biomedical Signal Analysis for Connected Healthcare","author":"Krishnan","year":"2021"},{"key":"10.1016\/j.bspc.2023.105272_b58","unstructured":"C. Sch\u00f6rkhuber, A. Klapuri, Constant-Q transform toolbox for music processing, in: 7th Sound and Music Computing Conference, Barcelona, Spain, 2010, pp. 3\u201364."},{"key":"10.1016\/j.bspc.2023.105272_b59","series-title":"Empirical evaluation of rectified activations in convolutional network","author":"Xu","year":"2015"},{"key":"10.1016\/j.bspc.2023.105272_b60","series-title":"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size","author":"Iandola","year":"2016"},{"issue":"21","key":"10.1016\/j.bspc.2023.105272_b61","doi-asserted-by":"crossref","first-page":"4264","DOI":"10.3390\/rs13214264","article-title":"Continuous human activity recognition through parallelism LSTM with multi-frequency spectrograms","volume":"13","author":"Ding","year":"2021","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.bspc.2023.105272_b62","first-page":"206","article-title":"Classification of cardiac patient states using artificial neural networks","volume":"8","author":"Kannathal","year":"2003","journal-title":"Exp. Clin. Cardiol."},{"issue":"9","key":"10.1016\/j.bspc.2023.105272_b63","doi-asserted-by":"crossref","DOI":"10.3390\/s23094202","article-title":"RF-enabled deep-learning-assisted drone detection and identification: An end-to-end approach","volume":"23","author":"Alam","year":"2023","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.bspc.2023.105272_b64","first-page":"535","article-title":"Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning","volume":"14","author":"Acharya","year":"2020","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"10.1016\/j.bspc.2023.105272_b65","series-title":"2018 IEEE International Conference on Edge Computing","first-page":"125","article-title":"Real-time human detection as an edge service enabled by a lightweight cnn","author":"Nikouei","year":"2018"},{"key":"10.1016\/j.bspc.2023.105272_b66","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.107161","article-title":"Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011\u20132022)","volume":"226","author":"Loh","year":"2022","journal-title":"Comput. Methods Programs Biomed."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680942300705X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S174680942300705X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,6]],"date-time":"2023-09-06T11:36:44Z","timestamp":1694000204000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S174680942300705X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":66,"alternative-id":["S174680942300705X"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105272","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105272","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105272"}}