{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T09:04:52Z","timestamp":1742807092123},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.bspc.2023.105223","type":"journal-article","created":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T06:08:42Z","timestamp":1689055722000},"page":"105223","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"PB","title":["A Bi-Stream hybrid model with MLPBlocks and self-attention mechanism for EEG-based emotion recognition"],"prefix":"10.1016","volume":"86","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9235-9429","authenticated-orcid":false,"given":"Wei","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3226-0371","authenticated-orcid":false,"given":"Ye","family":"Tian","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8226-8139","authenticated-orcid":false,"given":"Bowen","family":"Hou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6484-4363","authenticated-orcid":false,"given":"Jianzhang","family":"Dong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4689-6140","authenticated-orcid":false,"given":"Shitong","family":"Shao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1982-6780","authenticated-orcid":false,"given":"Aiguo","family":"Song","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2013","series-title":"Emotion Recognition Based on Brain-Computer Interface Systems","author":"Rached","key":"10.1016\/j.bspc.2023.105223_b1"},{"key":"10.1016\/j.bspc.2023.105223_b2","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1007\/BF02344719","article-title":"Emotion recognition system using short-term monitoring of physiological signals","volume":"42","author":"Kim","year":"2004","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b3","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.patrec.2019.01.008","article-title":"Extended deep neural network for facial emotion recognition","volume":"120","author":"Jain","year":"2019","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.bspc.2023.105223_b4","doi-asserted-by":"crossref","first-page":"1249(1)","DOI":"10.3390\/s21041249","article-title":"Deep learning techniques for speech emotion recognition, from databases to models","volume":"21","author":"Abbaschian","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.105223_b5","series-title":"International Conference on Pattern Recognition","first-page":"294","article-title":"Pose-based body language recognition for emotion and psychiatric symptom interpretation","author":"Yang","year":"2021"},{"key":"10.1016\/j.bspc.2023.105223_b6","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1109\/TCDS.2021.3098842","article-title":"Can emotion be transferred?\u2013a review on transfer learning for EEG-based emotion recognition","volume":"14","author":"Li","year":"2021","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"10.1016\/j.bspc.2023.105223_b7","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1109\/TAFFC.2017.2714671","article-title":"Emotions recognition using EEG signals: A survey","volume":"10","author":"Alarc\u00e3o","year":"2019","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b8","first-page":"3281","article-title":"Multisource transfer learning for cross-subject EEG emotion recognition","volume":"50","author":"Li","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.bspc.2023.105223_b9","doi-asserted-by":"crossref","first-page":"112379(1)","DOI":"10.1016\/j.measurement.2022.112379","article-title":"TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition","volume":"207","author":"Li","year":"2023","journal-title":"Measurement"},{"key":"10.1016\/j.bspc.2023.105223_b10","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1109\/TCDS.2019.2949306","article-title":"Domain adaptation for EEG emotion recognition based on latent representation similarity","volume":"12","author":"Li","year":"2020","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"10.1016\/j.bspc.2023.105223_b11","doi-asserted-by":"crossref","first-page":"4359","DOI":"10.1109\/JSEN.2022.3144317","article-title":"Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model","volume":"22","author":"Wang","year":"2022","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.bspc.2023.105223_b12","first-page":"1730","article-title":"Subject independent emotion recognition from eeg using VMD and deep learning","volume":"34","author":"Pandey","year":"2022","journal-title":"J. King Saud Univ.-Comput. Inf. Sci."},{"key":"10.1016\/j.bspc.2023.105223_b13","doi-asserted-by":"crossref","unstructured":"Z. He, Y. Zhong, J. Pan, Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022, pp. 3214\u20133218.","DOI":"10.1109\/ICASSP43922.2022.9746600"},{"key":"10.1016\/j.bspc.2023.105223_b14","series-title":"International Conference on Artificial Neural Networks","first-page":"37","article-title":"BiSMSM: A hybrid MLP-based model of global self-attention processes for EEG-based emotion recognition","author":"Li","year":"2022"},{"key":"10.1016\/j.bspc.2023.105223_b15","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1109\/TAFFC.2014.2339834","article-title":"Feature extraction and selection for emotion recognition from EEG","volume":"5","author":"Jenke","year":"2014","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b16","doi-asserted-by":"crossref","first-page":"143550","DOI":"10.1109\/ACCESS.2019.2944008","article-title":"Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study","volume":"7","author":"Al-Shargie","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2023.105223_b17","doi-asserted-by":"crossref","first-page":"102648(1)","DOI":"10.1016\/j.bspc.2021.102648","article-title":"EEG-based emotion recognition using tunable q wavelet transform and rotation forest ensemble classifier","volume":"68","author":"Subasi","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.105223_b18","series-title":"International Conference on Signal Processing and Integrated Networks","first-page":"180","article-title":"Classification of human emotions from EEG signals using SVM and LDA classifiers","author":"Bhardwaj","year":"2015"},{"key":"10.1016\/j.bspc.2023.105223_b19","doi-asserted-by":"crossref","first-page":"101867(1)","DOI":"10.1016\/j.bspc.2020.101867","article-title":"Automated emotion recognition based on higher order statistics and deep learning algorithm","volume":"58","author":"Sharma","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.105223_b20","doi-asserted-by":"crossref","first-page":"103361(1)","DOI":"10.1016\/j.bspc.2021.103361","article-title":"Capsule neural networks on spatio-temporal EEG frames for cross-subject emotion recognition","volume":"72","author":"Jana","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.105223_b21","doi-asserted-by":"crossref","first-page":"102743(1)","DOI":"10.1016\/j.bspc.2021.102743","article-title":"Leveraging spatial\u2013temporal convolutional features for EEG-based emotion recognition","volume":"69","author":"An","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.105223_b22","doi-asserted-by":"crossref","unstructured":"Z. Jia, Y. Lin, X. Cai, H. Chen, H. Gou, J. Wang, SST- emotionnet: Spatial-spectral\u2013temporal based attention 3d dense network for EEG emotion recognition, in: ACM International Conference on Multimedia, Chengdu, China, 2020, pp. 2909\u20132917.","DOI":"10.1145\/3394171.3413724"},{"key":"10.1016\/j.bspc.2023.105223_b23","doi-asserted-by":"crossref","first-page":"1359","DOI":"10.1049\/el.2020.2380","article-title":"Classification of emotions from EEG signals using time-order representation based on the s-transform and convolutional neural network","volume":"56","author":"Khare","year":"2020","journal-title":"Electron. Lett."},{"key":"10.1016\/j.bspc.2023.105223_b24","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1109\/TAFFC.2018.2817622","article-title":"EEG emotion recognition using dynamical graph convolutional neural networks","volume":"11","author":"Song","year":"2020","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b25","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1142\/S0218488598000094","article-title":"The vanishing gradient problem during learning recurrent neural nets and problem solutions","volume":"6","author":"Hochreiter","year":"1998","journal-title":"Int. J. Uncertain. Fuzziness Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2023.105223_b26","doi-asserted-by":"crossref","first-page":"37(1)","DOI":"10.3389\/fnbot.2019.00037","article-title":"SAE+LSTM: A new framework for emotion recognition from multi-channel EEG","volume":"13","author":"Xing","year":"2019","journal-title":"Front. Neurorobot."},{"key":"10.1016\/j.bspc.2023.105223_b27","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1109\/TCYB.2017.2788081","article-title":"Spatial\u2013temporal recurrent neural network for emotion recognition","volume":"49","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.bspc.2023.105223_b28","doi-asserted-by":"crossref","first-page":"93711","DOI":"10.1109\/ACCESS.2019.2927768","article-title":"Phase-locking value based graph convolutional neural networks for emotion recognition","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2023.105223_b29","doi-asserted-by":"crossref","first-page":"2869","DOI":"10.1109\/TBME.2019.2897651","article-title":"EEG based emotion recognition by combining functional connectivity network and local activations","volume":"66","author":"Li","year":"2019","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2023.105223_b30","first-page":"1(1)","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.bspc.2023.105223_b31","unstructured":"A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16 \u00d7 16 words: Transformers for image recognition at scale, in: International Conference on Learning Representations, 2021, pp. 11929(1)\u201311929(22), http:\/\/OpenReview.net."},{"key":"10.1016\/j.bspc.2023.105223_b32","first-page":"1","article-title":"EEG-based emotion recognition via channel-wise attention and self attention","author":"Tao","year":"2020","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b33","doi-asserted-by":"crossref","first-page":"109038(1)","DOI":"10.1016\/j.knosys.2022.109038","article-title":"Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion","volume":"250","author":"Priyasad","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2023.105223_b34","series-title":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"5723","article-title":"Introducing attention mechanism for EEG signals: Emotion recognition with vision transformers","author":"Arjun","year":"2021"},{"key":"10.1016\/j.bspc.2023.105223_b35","series-title":"IEEE International Conference on Bioinformatics and Biomedicine","first-page":"1575","article-title":"Emotion transformer fusion: Complementary representation properties of EEG and eye movements on recognizing anger and surprise","author":"Wang","year":"2021"},{"key":"10.1016\/j.bspc.2023.105223_b36","first-page":"355","article-title":"Emotion recognition based on EEG using LSTM recurrent neural network","volume":"8","author":"Alhagry","year":"2017","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"10.1016\/j.bspc.2023.105223_b37","series-title":"IEEE International Conference on Image Processing","first-page":"359","article-title":"Two-stream hybrid attention network for multimodal classification","author":"Chen","year":"2021"},{"key":"10.1016\/j.bspc.2023.105223_b38","series-title":"International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: Rethinking model scaling for convolutional neural networks","author":"Tan","year":"2019"},{"key":"10.1016\/j.bspc.2023.105223_b39","series-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","first-page":"1","author":"Devlin","year":"2018"},{"key":"10.1016\/j.bspc.2023.105223_b40","series-title":"Proceedings of the Conference. Association for Computational Linguistics. Meeting","first-page":"2379","article-title":"Hybrid attention based multimodal network for spoken language classification","author":"Gu","year":"2018"},{"key":"10.1016\/j.bspc.2023.105223_b41","doi-asserted-by":"crossref","first-page":"839","DOI":"10.3390\/s20030839","article-title":"Two-stream attention network for pain recognition from video sequences","volume":"20","author":"Thiam","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.105223_b42","first-page":"24261","article-title":"MLP-Mixer: An all-MLP architecture for vision","volume":"34","author":"Tolstikhin","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.bspc.2023.105223_b43","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/T-AFFC.2011.15","article-title":"Deap: A database for emotion analysis using physiological signals","volume":"3","author":"Koelstra","year":"2012","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.bspc.2023.105223_b44","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1109\/JBHI.2017.2688239","article-title":"DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices","volume":"22","author":"Katsigiannis","year":"2018","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.bspc.2023.105223_b45","doi-asserted-by":"crossref","first-page":"106243(1)","DOI":"10.1016\/j.knosys.2020.106243","article-title":"EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network","volume":"205","author":"Cui","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2023.105223_b46","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1109\/TETC.2021.3087174","article-title":"Graph-embedded convolutional neural network for image-based EEG emotion recognition","volume":"10","author":"Song","year":"2022","journal-title":"IEEE Trans. Emerg. Top. Comput."},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.bspc.2023.105223_b47"},{"key":"10.1016\/j.bspc.2023.105223_b48","series-title":"Layer normalization","first-page":"1","author":"Ba","year":"2016"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423006560?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423006560?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,14]],"date-time":"2023-10-14T03:28:23Z","timestamp":1697254103000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423006560"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":48,"alternative-id":["S1746809423006560"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105223","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Bi-Stream hybrid model with MLPBlocks and self-attention mechanism for EEG-based emotion recognition","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.105223","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105223"}}