{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T15:50:10Z","timestamp":1725637810045},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.bspc.2023.104905","type":"journal-article","created":{"date-parts":[[2023,3,22]],"date-time":"2023-03-22T05:59:24Z","timestamp":1679464764000},"page":"104905","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Semi-supervised COVID-19 volumetric pulmonary lesion estimation on CT images using probabilistic active contour and CNN segmentation"],"prefix":"10.1016","volume":"85","author":[{"given":"Diomar Enrique","family":"Rodriguez-Obregon","sequence":"first","affiliation":[]},{"given":"Aldo Rodrigo","family":"Mejia-Rodriguez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3901-4023","authenticated-orcid":false,"given":"Leopoldo","family":"Cendejas-Zaragoza","sequence":"additional","affiliation":[]},{"given":"Juan","family":"Guti\u00e9rrez Mej\u00eda","sequence":"additional","affiliation":[]},{"given":"Edgar Rom\u00e1n","family":"Arce-Santana","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2889-1290","authenticated-orcid":false,"given":"Sonia","family":"Charleston-Villalobos","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1261-6040","authenticated-orcid":false,"given":"Tomas","family":"Aljama-Corrales","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1860-1408","authenticated-orcid":false,"given":"Alejandro","family":"Gabutti","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5235-7325","authenticated-orcid":false,"given":"Alejandro","family":"Santos-D\u00edaz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.104905_b0005","unstructured":"WHO, World health organization coronavirus (COVID-19) dashboard (May 2022). URL https:\/\/covid19.who.int\/."},{"issue":"7","key":"10.1016\/j.bspc.2023.104905_b0010","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1002\/jmv.25786","article-title":"Stability issues of RT-PCR testing of SARS-COV-2 for hospitalized patients clinically diagnosed with COVID-19","volume":"92","author":"Li","year":"2020","journal-title":"J. Med. Virol."},{"issue":"2","key":"10.1016\/j.bspc.2023.104905_b0015","doi-asserted-by":"crossref","first-page":"E97","DOI":"10.1148\/radiol.2020201473","article-title":"Co-rads: a categorical CT assessment scheme for patients suspected of having COVID-19\u2014definition and evaluation","volume":"296","author":"Prokop","year":"2020","journal-title":"Radiology"},{"issue":"2","key":"10.1016\/j.bspc.2023.104905_b0020","doi-asserted-by":"crossref","first-page":"E32","DOI":"10.1148\/radiol.2020200642","article-title":"Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in china: a report of 1014 cases","volume":"296","author":"Ai","year":"2020","journal-title":"Radiology"},{"issue":"5","key":"10.1016\/j.bspc.2023.104905_b0025","doi-asserted-by":"crossref","first-page":"391","DOI":"10.3390\/jpm11050391","article-title":"Differences among COVID-19, bronchopneumonia and atypical pneumonia in chest high resolution computed tomography assessed by artificial intelligence technology","volume":"11","author":"Chrzan","year":"2021","journal-title":"J. Personal. Med."},{"key":"10.1016\/j.bspc.2023.104905_b0030","unstructured":"L. Gattinoni, D. Chiumello, P. Caironi, M. Busana, F. Romitti, L. Brazzi, L. Camporota, COVID-19 pneumonia: different respiratory treatments for different phenotypes? (2020). doi:doi.org\/10.1007\/ s00134-020-06033-2."},{"key":"10.1016\/j.bspc.2023.104905_b0035","first-page":"1","article-title":"COVID-19 pneumonia: current evidence of chest imaging features, evolution and prognosis","author":"Larici","year":"2021","journal-title":"Chin. J. Acad. Radiol."},{"key":"10.1016\/j.bspc.2023.104905_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104297","article-title":"Bar man, Automated diagnosis of COVID-19 using radiological modalities and artificial intelligence functionalities: A retrospective study based on chest HRCT database","volume":"80","author":"Bhattacharjya","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"issue":"8","key":"10.1016\/j.bspc.2023.104905_b0045","doi-asserted-by":"crossref","first-page":"2615","DOI":"10.1109\/TMI.2020.2995965","article-title":"A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT","volume":"39","author":"Wang","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.bspc.2023.104905_b0050","article-title":"Serial quantitative chest ct assessment of COVID-19: a deep learning approach","volume":"2","author":"Huang","year":"2020","journal-title":"Radiology: Cardiothoracic Imaging"},{"key":"10.1016\/j.bspc.2023.104905_b0055","doi-asserted-by":"crossref","unstructured":"H. Yue, Q. Yu, C. Liu, Y. Huang, Z. Jiang, C. Shao, H. Zhang, B. Ma, et. al., Machine learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: a multicenter study, Ann. Transl. Med., 8 (14) (2020), https\/\/doi.org\/10.21037\/atm-20-3026.","DOI":"10.21037\/atm-20-3026"},{"key":"10.1016\/j.bspc.2023.104905_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.103662","article-title":"Effectiveness evaluation of different feature extraction methods for classification of covid-19 from computed tomography images: A high accuracy classification study","volume":"76","author":"Al-Areqi","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.104905_b0065","article-title":"Deep learning models-based ct-scan image classification for automated screening of covid-19, Biomedical Signal Processing and","volume":"80","author":"Gupta","year":"2023","journal-title":"Control"},{"key":"10.1016\/j.bspc.2023.104905_b0070","doi-asserted-by":"crossref","first-page":"3113","DOI":"10.1109\/TIP.2021.3058783","article-title":"Jcs: An explainable covid-19 diagnosis system by joint classification and segmentation","volume":"30","author":"Wu","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.bspc.2023.104905_b0075","series-title":"In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"2453","article-title":"A weakly supervised consistency-based learning method for covid-19 segmentation in ct images","author":"Laradji","year":"2021"},{"key":"10.1016\/j.bspc.2023.104905_b0080","unstructured":"M. Jun, G. Cheng, W. Yixin, A. Xingle, G. Jiantao, Y. Ziqi, Z. Minqing, L. Xin, D. Xueyuan, C. Shucheng, W. Hao, M. Sen, Y. Xiaoyu, N. Ziwei, L. Chen, T. Lu, Z. Yuntao, Z. Qiongjie, D. Guoqiang, H. Jian, COVID19 ct lung and infection segmentation dataset (apr 2020). URL https:\/\/doi.org\/10.5281\/zenodo.3757476."},{"key":"10.1016\/j.bspc.2023.104905_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108341","article-title":"Weakly supervised segmentation of COVID19 infection with scribble annotation on ct images","volume":"122","author":"Liu","year":"2022","journal-title":"Pattern Recogn."},{"issue":"4","key":"10.1016\/j.bspc.2023.104905_b0090","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.1002\/mp.14609","article-title":"Abnormal lung quantification in chest ct images of COVID-19 patients with deep learning and its application to severity prediction","volume":"48","author":"Shan","year":"2021","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.104905_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104250","article-title":"A teacher\u2013student framework with fourier transform augmentation for covid-19 infection segmentation in ct images","volume":"79","author":"Chen","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.104905_b0100","doi-asserted-by":"crossref","first-page":"12378","DOI":"10.1109\/ACCESS.2023.3236812","article-title":"Detecting COVID-19 From Lung Computed Tomography Images: A Swarm optimized Artificial Neural Network Approach. IEEE","volume":"11","author":"Punitha","year":"2023","journal-title":"Access"},{"key":"10.1016\/j.bspc.2023.104905_b0105","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106698","article-title":"A convolutional neural network with pixel-wise sparse graph reasoning for COVID-19 lesion segmentation in CT images","author":"Jia","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.104905_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102771","article-title":"Dense regression activation maps for lesion segmentation in CT scans of COVID-19 patients","author":"Xie","year":"2023","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.bspc.2023.104905_b0115","doi-asserted-by":"crossref","unstructured":"M. Elgendi, M. U. Nasir, Q. Tang, D. Smith, J.-P. Grenier, C. Batte, B. Spieler, W. D. Leslie, C. Menon, R. R. Fletcher, et al., The effectiveness of image augmentation in deep learning networks for detecting COVID-19: A geometric transformation perspective, Frontiers in Medicine 8. Front. Med. (Lausanne) (2021), https\/\/doi.org\/10.3389\/fmed.2021.629134. PMID: 33732718.","DOI":"10.3389\/fmed.2021.629134"},{"key":"10.1016\/j.bspc.2023.104905_b0120","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/8925930","article-title":"An improved COVID-19 detection using gan-based data augmentation and novel qunet-based classification","author":"Asghar","year":"2022","journal-title":"Biomed Res. Int."},{"key":"10.1016\/j.bspc.2023.104905_b0125","doi-asserted-by":"crossref","DOI":"10.1155\/2021\/8828404","article-title":"Transfer learning to detect COVID-19 automatically from x-ray images using convolutional neural networks","author":"Taresh","year":"2021","journal-title":"Int. J. Biomed. Imaging"},{"issue":"8","key":"10.1016\/j.bspc.2023.104905_b0130","doi-asserted-by":"crossref","first-page":"973","DOI":"10.2174\/1573405616666201123120417","article-title":"Deep transfer learning for COVID-19 prediction: case study for limited data problems","volume":"17","author":"Albahli","year":"2021","journal-title":"Current medical imaging"},{"key":"10.1016\/j.bspc.2023.104905_b0135","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.patrec.2021.08.035","article-title":"Deep transfer learning based classification model for COVID-19 using chest ct-scans","volume":"152","author":"Lahsaini","year":"2021","journal-title":"Pattern Recogn. Lett."},{"issue":"1","key":"10.1016\/j.bspc.2023.104905_b0140","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1007\/s10489-020-01826-w","article-title":"Deep transfer learning-based automated detection of COVID-19 from lung ct scan slices","volume":"51","author":"Ahuja","year":"2021","journal-title":"Appl. Intell."},{"issue":"3","key":"10.1016\/j.bspc.2023.104905_b0145","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1002\/mp.14676","article-title":"Toward data-efficient learning: A benchmark for COVID-19 ct lung and infection segmentation","volume":"48","author":"Ma","year":"2021","journal-title":"Med. Phys."},{"issue":"10","key":"10.1016\/j.bspc.2023.104905_b0150","doi-asserted-by":"crossref","first-page":"2808","DOI":"10.1109\/TMI.2021.3066161","article-title":"Label-free segmentation of covid-19 lesions in lung ct","volume":"40","author":"Yao","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2023.104905_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104099","article-title":"Weakly supervised segmentation of covid-19 infection with local lesion coherence on ct images","volume":"79","author":"Sun","year":"2023","journal-title":"Biomedical Signal Processing and Control"},{"issue":"3","key":"10.1016\/j.bspc.2023.104905_b0160","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1007\/s11517-018-1896-y","article-title":"A new probabilistic active contour region-based method for multiclass medical image segmentation","volume":"57","author":"Arce-Santana","year":"2019","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.bspc.2023.104905_b0165","article-title":"Deep neural networks segment neuronal membranes in electron microscopy images","volume":"25","author":"Ciresan","year":"2012","journal-title":"Advances in neural information processing systems"},{"key":"10.1016\/j.bspc.2023.104905_b0170","doi-asserted-by":"crossref","unstructured":"O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234\u2013241. doi:10.48550\/arXiv.1505.04597.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.bspc.2023.104905_b0175","first-page":"3850","article-title":"COVID-19 volumetric pulmonary lesion estimation on ct images using a u-net and probabilistic active contour segmentation","author":"Cendejas-Zaragoza","year":"2021","journal-title":"Annu. Int. Conf. IEEE Eng. Med. Biol. Soc."},{"issue":"11","key":"10.1016\/j.bspc.2023.104905_b0180","doi-asserted-by":"crossref","first-page":"5941","DOI":"10.1002\/mp.14424","article-title":"Plethora: Pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest ct processing pipelines","volume":"47","author":"Kiser","year":"2020","journal-title":"Med. Phys."},{"key":"10.1016\/j.bspc.2023.104905_b0185","doi-asserted-by":"crossref","unstructured":"C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, M. Jorge Cardoso, Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, in: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, 2017, pp. 240\u2013248.","DOI":"10.1007\/978-3-319-67558-9_28"},{"key":"10.1016\/j.bspc.2023.104905_b0190","series-title":"in: 2020 IEEE Conference on Computational intelligence in Bioinformatics and Computational Biology (CIBCB)","first-page":"1","article-title":"A survey of loss functions for semantic segmentation","author":"Jadon","year":"2020"},{"issue":"3","key":"10.1016\/j.bspc.2023.104905_b0195","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","article-title":"Measures of the amount of ecologic association between species","volume":"26","author":"Dice","year":"1945","journal-title":"Ecology"},{"key":"10.1016\/j.bspc.2023.104905_b0200","first-page":"1","article-title":"A survey of loss functions for semantic segmentation","volume":"IEEE","author":"Jadon","year":"2020","journal-title":"Bioinformatics and Computational Biology (CIBCB)"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423003385?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423003385?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T23:41:20Z","timestamp":1716939680000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423003385"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":40,"alternative-id":["S1746809423003385"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104905","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semi-supervised COVID-19 volumetric pulmonary lesion estimation on CT images using probabilistic active contour and CNN segmentation","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104905","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104905"}}