{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T06:36:50Z","timestamp":1725518210686},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61871022","62271023"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004826","name":"Natural Science Foundation of Beijing Municipality","doi-asserted-by":"publisher","award":["7202102"],"id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012240","name":"Academic Excellence Foundation of BUAA for PHD Students","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012240","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013314","name":"Higher Education Discipline Innovation Project","doi-asserted-by":"publisher","award":["B13003"],"id":[{"id":"10.13039\/501100013314","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.bspc.2023.104615","type":"journal-article","created":{"date-parts":[[2023,1,25]],"date-time":"2023-01-25T15:06:31Z","timestamp":1674659191000},"page":"104615","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["D2AFNet: A dual-domain attention cascade network for accurate and interpretable atrial fibrillation detection"],"prefix":"10.1016","volume":"82","author":[{"given":"Peng","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Chenbin","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Song","sequence":"additional","affiliation":[]},{"given":"Yangyang","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Youdan","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Yufang","family":"He","sequence":"additional","affiliation":[]},{"given":"Tianyi","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2617-9673","authenticated-orcid":false,"given":"Guanglei","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.104615_b0005","doi-asserted-by":"crossref","first-page":"1424","DOI":"10.1016\/j.chest.2018.03.040","article-title":"Atrial fibrillation in the ICU","volume":"154","author":"Bosch","year":"2018","journal-title":"Chest"},{"key":"10.1016\/j.bspc.2023.104615_b0010","doi-asserted-by":"crossref","DOI":"10.1007\/s12033-022-00449-5","article-title":"Research progress of LncRNAs in atrial fibrillation","author":"Wang","year":"2022","journal-title":"Mol. Biotechnol."},{"key":"10.1016\/j.bspc.2023.104615_b0015","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1136\/heartjnl-2020-317915","article-title":"Atrial fibrillation prevalence, awareness and management in a nationwide survey of adults in China","volume":"107","author":"Du","year":"2021","journal-title":"Heart"},{"key":"10.1016\/j.bspc.2023.104615_b0020","doi-asserted-by":"crossref","first-page":"1724","DOI":"10.4022\/jafib.1724","article-title":"Electrocardiogram (ECG) for the prediction of incident atrial fibrillation: an overview","volume":"10","author":"Aizawa","year":"2017","journal-title":"J. Atr. Fibrillation"},{"key":"10.1016\/j.bspc.2023.104615_b0025","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.ijcard.2020.11.053","article-title":"Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram","volume":"328","author":"Jo","year":"2021","journal-title":"Int. J. Cardiol."},{"key":"10.1016\/j.bspc.2023.104615_b0030","doi-asserted-by":"crossref","unstructured":"N. Nuryani, B. Harjito, I. Yahya, A. Lestari, Atrial fibrillation detection using support vector machine, in: Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE), 2015, pp. 215-218.","DOI":"10.1109\/ICEVTIMECE.2015.7496672"},{"key":"10.1016\/j.bspc.2023.104615_b0035","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.compbiomed.2015.03.005","article-title":"Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine","volume":"60","author":"Asgari","year":"2015","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.104615_b0040","first-page":"1047","article-title":"A Support Vector Machine approach for reliable detection of atrial fibrillation events","volume":"2013","author":"Colloca","year":"2013","journal-title":"Comput. Cardiol."},{"key":"10.1016\/j.bspc.2023.104615_b0045","doi-asserted-by":"crossref","DOI":"10.3390\/s20030765","article-title":"Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine","volume":"20","author":"Czabanski","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.104615_b0050","doi-asserted-by":"crossref","unstructured":"R.S. Andersen, E.S. Poulsen, S. Puthusserypady, A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 2039-2042.","DOI":"10.1109\/EMBC.2017.8037253"},{"key":"10.1016\/j.bspc.2023.104615_b0055","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6579\/aac7aa","article-title":"A support vector machine approach for AF classification from a short single-lead ECG recording","volume":"39","author":"Liu","year":"2018","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.bspc.2023.104615_b0060","doi-asserted-by":"crossref","unstructured":"K. Resiandi, Adiwijaya, D.Q. Utama, Detection of atrial fibrillation disease based on electrocardiogram signal classification using RR interval and K-nearest neighbor, in: 2018 6th International Conference on Information and Communication Technology (ICoICT), 2018, pp. 501-506.","DOI":"10.1109\/ICoICT.2018.8528737"},{"key":"10.1016\/j.bspc.2023.104615_b0065","doi-asserted-by":"crossref","first-page":"1307","DOI":"10.1093\/europace\/euz036","article-title":"A novel atrial fibrillation prediction model for Chinese subjects: a nationwide cohort investigation of 682 237 study participants with random forest model","volume":"21","author":"Hu","year":"2019","journal-title":"EP Europace"},{"key":"10.1016\/j.bspc.2023.104615_b0070","first-page":"1","article-title":"Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier","volume":"2017","author":"Zabihi","year":"2017","journal-title":"Comput. Cardiol. (CinC)"},{"key":"10.1016\/j.bspc.2023.104615_b0075","first-page":"564","article-title":"Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform, Biocybernetics and Biomedical","volume":"38","author":"Kumar","year":"2018","journal-title":"Engineering"},{"key":"10.1016\/j.bspc.2023.104615_b0080","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1109\/CIC.1991.169073","article-title":"Detection of atrial fibrillation using artificial neural networks","volume":"1991","author":"Artis","year":"1991","journal-title":"Proc. Comput. Cardiol."},{"key":"10.1016\/j.bspc.2023.104615_b0085","doi-asserted-by":"crossref","first-page":"2967","DOI":"10.1016\/j.patcog.2007.03.008","article-title":"Atrial fibrillation classification with artificial neural networks","volume":"40","author":"Kara","year":"2007","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.bspc.2023.104615_b0090","first-page":"9159158","article-title":"Automated classification of atrial fibrillation using artificial neural network for wearable devices","volume":"2020","author":"Ma","year":"2020","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.bspc.2023.104615_b0095","doi-asserted-by":"crossref","DOI":"10.3390\/s20123570","article-title":"Artificial neural network for atrial fibrillation identification in portable devices","volume":"20","author":"Marinucci","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.bspc.2023.104615_b0100","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1016\/j.jelectrocard.2016.07.033","article-title":"Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification","volume":"49","author":"Kennedy","year":"2016","journal-title":"J. Electrocardiol."},{"key":"10.1016\/j.bspc.2023.104615_b0105","first-page":"1","article-title":"Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier","volume":"2017","author":"Datta","year":"2017","journal-title":"Comput. Cardiol. (CinC)"},{"key":"10.1016\/j.bspc.2023.104615_b0110","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.compbiomed.2017.12.007","article-title":"Detecting atrial fibrillation by deep convolutional neural networks","volume":"93","author":"Xia","year":"2018","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.104615_b0115","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2019.103378","article-title":"Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network","volume":"116","author":"Cai","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.104615_b0120","doi-asserted-by":"crossref","first-page":"1744","DOI":"10.1109\/JBHI.2018.2858789","article-title":"Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings","volume":"22","author":"Fan","year":"2018","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2023.104615_b0125","doi-asserted-by":"crossref","unstructured":"Y. Huang, J. Lin, G. Wang, Z. Ding, L. Sun, A multi-dilation convolution neural network for atrial fibrillation detection, in: Proceedings of the 2020 4th International Conference on Digital Signal Processing, Association for Computing Machinery, Chengdu, China, 2020, pp. 136\u2013140.","DOI":"10.1145\/3408127.3408176"},{"key":"10.1016\/j.bspc.2023.104615_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104880","article-title":"Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings","volume":"139","author":"Zhang","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2023.104615_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2019.105219","article-title":"An incremental learning system for atrial fibrillation detection based on transfer learning and active learning","volume":"187","author":"Shi","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.bspc.2023.104615_b0140","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1186\/s12911-021-01571-1","article-title":"AFibNet: an implementation of atrial fibrillation detection with convolutional neural network","volume":"21","author":"Tutuko","year":"2021","journal-title":"BMC Med. Inf. Decis. Making"},{"key":"10.1016\/j.bspc.2023.104615_b0145","first-page":"1","article-title":"Multi-scale convolutional neural network ensemble for multi-class arrhythmia classification","author":"Prabhakararao","year":"2021","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2023.104615_b0150","first-page":"1","article-title":"Atrial fibrillation classification using QRS complex features and LSTM","volume":"2017","author":"Maknickas","year":"2017","journal-title":"Comput. Cardiol. (CinC)"},{"key":"10.1016\/j.bspc.2023.104615_b0155","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s13755-020-00103-x","article-title":"A stacked LSTM for atrial fibrillation prediction based on multivariate ECGs","volume":"8","author":"Sun","year":"2020","journal-title":"Health Inf. Sci. Syst."},{"key":"10.1016\/j.bspc.2023.104615_b0160","series-title":"Intelligent Systems Technologies and Applications","first-page":"212","article-title":"Real-time detection of atrial fibrillation from short time single lead ECG traces using recurrent neural networks","author":"Sujadevi","year":"2018"},{"key":"10.1016\/j.bspc.2023.104615_b0165","doi-asserted-by":"crossref","first-page":"12818","DOI":"10.1038\/s41598-021-92172-5","article-title":"A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm","volume":"11","author":"Baek","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.bspc.2023.104615_b0170","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.ins.2021.06.009","article-title":"An intelligent computer-aided approach for atrial fibrillation and atrial flutter signals classification using modified bidirectional LSTM network","volume":"574","author":"Wang","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.bspc.2023.104615_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105460","article-title":"Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks","volume":"193","author":"Jin","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2023.104615_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105446","article-title":"Automated detection of atrial fibrillation and atrial flutter in ECG signals based on convolutional and improved Elman neural network","volume":"193","author":"Wang","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.bspc.2023.104615_b0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102194","article-title":"Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets","volume":"63","author":"Petmezas","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.bspc.2023.104615_b0190","doi-asserted-by":"crossref","DOI":"10.3390\/healthcare8020139","article-title":"Automatic detection of atrial fibrillation based on CNN-LSTM and shortcut connection","volume":"8","author":"Ping","year":"2020","journal-title":"Healthcare"},{"key":"10.1016\/j.bspc.2023.104615_b0195","first-page":"1","article-title":"An automatic system for atrial fibrillation by using a CNN-LSTM model","volume":"2020","author":"Ma","year":"2020","journal-title":"Discret. Dyn. Nat. Soc."},{"key":"10.1016\/j.bspc.2023.104615_b0200","first-page":"445","article-title":"A novel multi-scale convolutional network with attention-based bidirectional gated recurrent unit for atrial fibrillation discrimination, Biocybernetics and Biomedical","volume":"41","author":"Wang","year":"2021","journal-title":"Engineering"},{"key":"10.1016\/j.bspc.2023.104615_b0205","doi-asserted-by":"crossref","unstructured":"S. Woo, J. Park, J.-Y. Lee, I.-S. Kweon, CBAM: Convolutional block attention module, european conference on computer vision, in: European Conference on Computer Vision, 2018.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.bspc.2023.104615_b0210","doi-asserted-by":"crossref","unstructured":"F. Liu, Z. He, J. Li, E.N.g. Kwee, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection, (2018) 1368-1373.","DOI":"10.1166\/jmihi.2018.2442"},{"key":"10.1016\/j.bspc.2023.104615_b0215","doi-asserted-by":"crossref","first-page":"E215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.bspc.2023.104615_b0220","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1136\/bmj.324.7334.415","article-title":"ABC of clinical electrocardiography. Introduction. I-Leads, rate, rhythm, and cardiac axis","volume":"324","author":"Meek","year":"2002","journal-title":"BMJ"},{"key":"10.1016\/j.bspc.2023.104615_b0225","first-page":"0157","article-title":"Removal of noise from electrocardiogram using digital FIR and IIR filters with various methods","volume":"2015","author":"Kumar","year":"2015","journal-title":"Int. Conf. Commun. Signal Process. (ICCSP)"},{"key":"10.1016\/j.bspc.2023.104615_b0230","doi-asserted-by":"crossref","first-page":"20150202","DOI":"10.1098\/rsta.2015.0202","article-title":"Principal component analysis: a review and recent developments","volume":"374","author":"Jolliffe","year":"2016","journal-title":"Philos. Trans. R. Soc. A Math. Phys. Eng. Sci."},{"key":"10.1016\/j.bspc.2023.104615_b0235","doi-asserted-by":"crossref","first-page":"2461","DOI":"10.1109\/JBHI.2020.2981526","article-title":"Deep multi-scale fusion neural network for multi-class arrhythmia detection","volume":"24","author":"Wang","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423000484?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423000484?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T01:34:57Z","timestamp":1716860097000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423000484"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":47,"alternative-id":["S1746809423000484"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104615","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"D2AFNet: A dual-domain attention cascade network for accurate and interpretable atrial fibrillation detection","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104615","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104615"}}