{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T23:13:20Z","timestamp":1744499600866},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.bspc.2023.104614","type":"journal-article","created":{"date-parts":[[2023,1,25]],"date-time":"2023-01-25T15:06:17Z","timestamp":1674659177000},"page":"104614","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"special_numbering":"C","title":["Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm"],"prefix":"10.1016","volume":"83","author":[{"given":"Weiguo","family":"Ren","sequence":"first","affiliation":[]},{"given":"Aysa","family":"Hasanzade Bashkandi","sequence":"additional","affiliation":[]},{"given":"Javad","family":"Afshar Jahanshahi","sequence":"additional","affiliation":[]},{"given":"Ahmad","family":"Qasim Mohammad AlHamad","sequence":"additional","affiliation":[]},{"given":"Danial","family":"Javaheri","sequence":"additional","affiliation":[]},{"given":"Morteza","family":"Mohammadi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2023.104614_b0005","doi-asserted-by":"crossref","DOI":"10.1155\/2021\/5595180","article-title":"Breast Cancer Diagnosis by Convolutional Neural Network and Advanced Thermal Exchange Optimization Algorithm","volume":"2021","author":"Cai","year":"2021","journal-title":"Comput. Math. Methods Med."},{"issue":"22","key":"10.1016\/j.bspc.2023.104614_b0010","doi-asserted-by":"crossref","first-page":"12771","DOI":"10.3390\/su132212771","article-title":"Optimization of PEMFC Model Parameters Using Meta-Heuristics","volume":"13","author":"Mahdinia","year":"2021","journal-title":"Sustainability"},{"key":"10.1016\/j.bspc.2023.104614_b0015","unstructured":"QUICK BRAIN TUMOR FACTS. 2022; Available from: https:\/\/braintumor.org\/brain-tumor-information\/brain-tumor-facts\/."},{"key":"10.1016\/j.bspc.2023.104614_b0020","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1515\/med-2018-0002","article-title":"A Hybrid Neural Network \u2013 World Cup Optimization Algorithm for Melanoma Detection","volume":"13","author":"Navid Razmjooy","year":"2018","journal-title":"Open Medicine"},{"issue":"4","key":"10.1016\/j.bspc.2023.104614_b0025","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1007\/s40815-017-0305-2","article-title":"Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal","volume":"19","author":"Razmjooy","year":"2017","journal-title":"Int. J. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0030","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1515\/med-2018-0002","article-title":"A hybrid neural network\u2013world cup optimization algorithm for melanoma detection","volume":"13","author":"Razmjooy","year":"2018","journal-title":"Open Medicine"},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0035","doi-asserted-by":"crossref","first-page":"860","DOI":"10.1515\/med-2020-0131","article-title":"Computer-aided diagnosis of skin cancer based on soft computing techniques","volume":"15","author":"Xu","year":"2020","journal-title":"Open Medicine"},{"issue":"17","key":"10.1016\/j.bspc.2023.104614_b0040","doi-asserted-by":"crossref","first-page":"3478","DOI":"10.1049\/iet-gtd.2019.1625","article-title":"Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor","volume":"14","author":"Yuan","year":"2020","journal-title":"IET Gener. Transm. Distrib."},{"key":"10.1016\/j.bspc.2023.104614_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/15567036.2020.1791286","article-title":"High step-up interleaved dc\/dc converter with high efficiency","author":"Ye","year":"2020","journal-title":"Energy Sources Part A"},{"issue":"14","key":"10.1016\/j.bspc.2023.104614_b0050","doi-asserted-by":"crossref","first-page":"2587","DOI":"10.1049\/iet-rpg.2019.0485","article-title":"Reliability constraint stochastic UC by considering the correlation of random variables with Copula theory","volume":"13","author":"Yu","year":"2019","journal-title":"IET Renew. Power Gener."},{"key":"10.1016\/j.bspc.2023.104614_b0055","article-title":"Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization","volume":"53","author":"Rezaie","year":"2022","journal-title":"Sustainable Energy Technol. Assess."},{"key":"10.1016\/j.bspc.2023.104614_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.renene.2019.05.008","article-title":"Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach","volume":"143","author":"Cai","year":"2019","journal-title":"Renew. Energy"},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0065","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1007\/s40313-019-00531-5","article-title":"A single-phase transformer-less grid-tied inverter based on switched capacitor for PV application","volume":"31","author":"Meng","year":"2020","journal-title":"J. Control, Automation Electrical Syst."},{"issue":"16","key":"10.1016\/j.bspc.2023.104614_b0070","doi-asserted-by":"crossref","first-page":"9882","DOI":"10.3390\/su14169882","article-title":"Developed design of battle royale optimizer for the optimum identification of solid oxide fuel cell","volume":"14","author":"Azar","year":"2022","journal-title":"Sustainability"},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0075","doi-asserted-by":"crossref","first-page":"90","DOI":"10.3390\/su13010090","article-title":"Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare","volume":"13","author":"Dehghani","year":"2021","journal-title":"Sustainability"},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0080","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1080\/1331677X.2018.1429291","article-title":"The price prediction for the energy market based on a new method","volume":"31","author":"Ebrahimian","year":"2018","journal-title":"Economic research-Ekonomska istra\u017eivanja"},{"key":"10.1016\/j.bspc.2023.104614_b0085","doi-asserted-by":"crossref","unstructured":"M. Eslami, et al., A New Formulation to Reduce the Number of Variables and Constraints to Expedite SCUC in Bulky Power Systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, p. 1-11.","DOI":"10.1007\/s40010-017-0475-1"},{"key":"10.1016\/j.bspc.2023.104614_b0090","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1016\/j.applthermaleng.2018.11.122","article-title":"Robust optimization based optimal chiller loading under cooling demand uncertainty","volume":"148","author":"Saeedi","year":"2019","journal-title":"Appl. Therm. Eng."},{"key":"10.1016\/j.bspc.2023.104614_b0095","first-page":"2319","article-title":"Brain tumor detection using neural network","author":"Sapra","year":"2013","journal-title":"International Journal of Science and Modern Engineering (IJISME)"},{"key":"10.1016\/j.bspc.2023.104614_b0100","doi-asserted-by":"crossref","first-page":"69215","DOI":"10.1109\/ACCESS.2019.2919122","article-title":"Multi-classification of brain tumor images using deep neural network","volume":"7","author":"Sultan","year":"2019","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.bspc.2023.104614_b0105","first-page":"1","article-title":"Automated brain tumor detection and identification using image processing and probabilistic neural network techniques","volume":"1","author":"Dahab","year":"2012","journal-title":"Int. J. Image Processing Visual Commun."},{"key":"10.1016\/j.bspc.2023.104614_b0110","unstructured":"E.M. Husein, D.M.A. Mahmoud, Brain tumor detection using artificial neural networks. 2012."},{"key":"10.1016\/j.bspc.2023.104614_b0115","doi-asserted-by":"crossref","unstructured":"V. Soleimani, F.H. Vincheh, Improving ant colony optimization for brain MRI image segmentation and brain tumor diagnosis. in 2013 first Iranian conference on pattern recognition and image analysis (PRIA). IEEE, 2013.","DOI":"10.1109\/PRIA.2013.6528454"},{"issue":"3","key":"10.1016\/j.bspc.2023.104614_b0120","doi-asserted-by":"crossref","first-page":"7109","DOI":"10.1080\/15567036.2022.2105453","article-title":"Optimum structure of a combined wind\/photovoltaic\/fuel cell-based on amended Dragon Fly optimization algorithm: a case study","volume":"44","author":"Bo","year":"2022","journal-title":"Energy Sources Part A"},{"key":"10.1016\/j.bspc.2023.104614_b0125","article-title":"Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm","volume":"55","author":"Jiang","year":"2022","journal-title":"J. Storage Mater."},{"issue":"2","key":"10.1016\/j.bspc.2023.104614_b0130","doi-asserted-by":"crossref","first-page":"4296","DOI":"10.1080\/15567036.2022.2074174","article-title":"Optimal modeling of combined cooling, heating, and power systems using developed African Vulture Optimization: a case study in watersport complex","volume":"44","author":"Chen","year":"2022","journal-title":"Energy Sources Part A"},{"key":"10.1016\/j.bspc.2023.104614_b0135","doi-asserted-by":"crossref","first-page":"7424","DOI":"10.1016\/j.egyr.2021.10.098","article-title":"Exergy analysis of a fuel cell power system and optimizing it with Fractional-order Coyote Optimization Algorithm","volume":"7","author":"Sun","year":"2021","journal-title":"Energy Rep."},{"key":"10.1016\/j.bspc.2023.104614_b0140","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.egyr.2020.03.010","article-title":"A new technique for optimal estimation of the circuit-based PEMFCs using developed Sunflower Optimization Algorithm","volume":"6","author":"Yuan","year":"2020","journal-title":"Energy Rep."},{"key":"10.1016\/j.bspc.2023.104614_b0145","article-title":"Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm","volume":"52","author":"Han","year":"2022","journal-title":"Sustainable Energy Technol. Assess."},{"key":"10.1016\/j.bspc.2023.104614_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2020.118738","article-title":"Model Parameter Estimation of the PEMFCs Using Improved Barnacles Mating Optimization Algorithm","author":"Yang","year":"2020","journal-title":"Energy"},{"issue":"12","key":"10.1016\/j.bspc.2023.104614_b0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s42452-020-03885-7","article-title":"A new optimal energy management strategy based on improved multi-objective antlion optimization algorithm: applications in smart home","volume":"2","author":"Ramezani","year":"2020","journal-title":"SN Appl.Sci."},{"key":"10.1016\/j.bspc.2023.104614_b0160","unstructured":"G. Wu, R. Mallipeddi, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report, 2017."},{"issue":"7","key":"10.1016\/j.bspc.2023.104614_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11432-018-9729-5","article-title":"A pigeon-inspired optimization algorithm for many-objective optimization problems","volume":"62","author":"Cui","year":"2019","journal-title":"SCIENCE CHINA Inf. Sci."},{"key":"10.1016\/j.bspc.2023.104614_b0170","series-title":"Structures","article-title":"Billiards-inspired optimization algorithm; a new meta-heuristic method","author":"Kaveh","year":"2020"},{"key":"10.1016\/j.bspc.2023.104614_b0175","doi-asserted-by":"crossref","unstructured":"R. Biedrzycki, A version of IPOP-CMA-ES algorithm with midpoint for CEC 2017 single objective bound constrained problems, in: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017.","DOI":"10.1109\/CEC.2017.7969479"},{"key":"10.1016\/j.bspc.2023.104614_b0180","series-title":"Heuristics for optimization and learning","first-page":"103","article-title":"Single-objective real-parameter optimization: Enhanced LSHADE-SPACMA algorithm","author":"Hadi","year":"2021"},{"key":"10.1016\/j.bspc.2023.104614_b0185","series-title":"Structures","article-title":"Water strider algorithm: A new metaheuristic and applications","author":"Kaveh","year":"2020"},{"key":"10.1016\/j.bspc.2023.104614_b0190","doi-asserted-by":"crossref","unstructured":"N. Hansen, Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed, in: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers, 2009.","DOI":"10.1145\/1570256.1570333"},{"key":"10.1016\/j.bspc.2023.104614_b0195","doi-asserted-by":"crossref","unstructured":"W. Shang, Y.-F. Cheng, An improved OTSU method based on Genetic Algorithm. in 2016 4th International Conference on Machinery, Materials and Information Technology Applications. Atlantis Press, 2017.","DOI":"10.2991\/icmmita-16.2016.304"},{"issue":"1","key":"10.1016\/j.bspc.2023.104614_b0200","doi-asserted-by":"crossref","first-page":"1","DOI":"10.21609\/jiki.v6i1.203","article-title":"Optimum Multilevel Thresholding Hybrid GA-PSO by Algorithm","volume":"6","author":"Fauzi","year":"2013","journal-title":"Jurnal Ilmu Komputer dan Informasi"},{"key":"10.1016\/j.bspc.2023.104614_b0205","unstructured":"Brain-Tumor-Progression, K. Smith, Editor, 2021."},{"key":"10.1016\/j.bspc.2023.104614_b0210","doi-asserted-by":"crossref","unstructured":"M. Nazir, et al., Brain tumor detection from MRI images using multi-level wavelets, in: 2019 international conference on Computer and Information Sciences (ICCIS). IEEE, 2019.","DOI":"10.1109\/ICCISci.2019.8716413"},{"key":"10.1016\/j.bspc.2023.104614_b0215","doi-asserted-by":"crossref","unstructured":"M.R. Ismael, I. Abdel-Qader. Brain tumor classification via statistical features and back-propagation neural network, in: 2018 IEEE international conference on electro\/information technology (EIT). IEEE, 2018.","DOI":"10.1109\/EIT.2018.8500308"},{"issue":"19","key":"10.1016\/j.bspc.2023.104614_b0220","doi-asserted-by":"crossref","first-page":"9083","DOI":"10.1007\/s00500-018-3618-7","article-title":"K-means clustering and neural network for object detecting and identifying abnormality of brain tumor","volume":"23","author":"Arunkumar","year":"2019","journal-title":"Soft. Comput."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423000472?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809423000472?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T22:55:08Z","timestamp":1727823308000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809423000472"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":44,"alternative-id":["S1746809423000472"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104614","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Brain tumor diagnosis using a step-by-step methodology based on courtship learning-based water strider algorithm","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2023.104614","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104614"}}