{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:14:29Z","timestamp":1728177269580},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62001380","62073260"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.bspc.2022.104536","type":"journal-article","created":{"date-parts":[[2022,12,27]],"date-time":"2022-12-27T11:02:08Z","timestamp":1672138928000},"page":"104536","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Feature generation and multi-sequence fusion based deep convolutional network for breast tumor diagnosis with missing MR sequences"],"prefix":"10.1016","volume":"82","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4253-7653","authenticated-orcid":false,"given":"Tonghui","family":"Wang","sequence":"first","affiliation":[]},{"given":"Hongyu","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6751-4880","authenticated-orcid":false,"given":"Jiahui","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Dandan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Baoying","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.bspc.2022.104536_b1","doi-asserted-by":"crossref","first-page":"209","DOI":"10.3322\/caac.21660","article-title":"Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"71","author":"Sung","year":"2021","journal-title":"CA Cancer J. Clin."},{"key":"10.1016\/j.bspc.2022.104536_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103319","article-title":"A deep learning fusion model with evidence-based confidence level analysis for differentiation of malignant and benign breast tumors using dynamic contrast enhanced MRI","volume":"72","author":"Wu","year":"2022","journal-title":"Biomed. Signal Process. Control."},{"issue":"1","key":"10.1016\/j.bspc.2022.104536_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12911-020-01257-0","article-title":"The role of histogram analysis in diffusion-weighted imaging in the differential diagnosis of benign and malignant breast lesions","volume":"20","author":"Jin","year":"2020","journal-title":"BMC Med. Inform. Decis. Mak."},{"issue":"9","key":"10.1016\/j.bspc.2022.104536_b4","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.1177\/0284185119896520","article-title":"Diagnostic performance of whole-lesion apparent diffusion coefficient histogram analysis metrics for differentiating benign and malignant breast lesions: a systematic review and diagnostic meta-analysis","volume":"61","author":"Xu","year":"2020","journal-title":"Acta Radiol."},{"key":"10.1016\/j.bspc.2022.104536_b5","article-title":"The value of dynamic contrast-enhanced magnetic resonance imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant diseases of the breast","author":"Ao","year":"2021","journal-title":"Acta Radiol."},{"issue":"5","key":"10.1016\/j.bspc.2022.104536_b6","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1016\/j.crad.2017.11.026","article-title":"Differentiation between malignant and benign breast masses: combination of semi-quantitative analysis on DCE-mri and histogram analysis of ADC maps","volume":"73","author":"Liu","year":"2018","journal-title":"Clin. Radiol.: J. R. Coll. Radiol."},{"key":"10.1016\/j.bspc.2022.104536_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102914","article-title":"An automatic computer-aided diagnosis system based on the multimodal fusion of breast cancer (MF-CAD)","volume":"69","author":"Mokni","year":"2021","journal-title":"Biomed. Signal Process. Control."},{"key":"10.1016\/j.bspc.2022.104536_b8","doi-asserted-by":"crossref","unstructured":"C. Li, H. Sun, Z. Liu, Learning cross-modal deep representations for multi-modal MR image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019, pp. 57\u201365.","DOI":"10.1007\/978-3-030-32245-8_7"},{"issue":"4","key":"10.1016\/j.bspc.2022.104536_b9","doi-asserted-by":"crossref","first-page":"1170","DOI":"10.1109\/TMI.2019.2945521","article-title":"Missing MRI pulse sequence synthesis using multi-modal generative adversarial network","volume":"39","author":"Sharma","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.bspc.2022.104536_b10","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1148\/radiol.2021203786","article-title":"Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model","volume":"299","author":"Conte","year":"2021","journal-title":"Radiology"},{"issue":"2","key":"10.1016\/j.bspc.2022.104536_b11","article-title":"Medical image fusion: A literature review present solutions and future directions","volume":"26","author":"Heba","year":"2017","journal-title":"Minufiya J. Electronic Eng. Res."},{"issue":"1","key":"10.1016\/j.bspc.2022.104536_b12","doi-asserted-by":"crossref","first-page":"981","DOI":"10.32604\/cmc.2022.019001","article-title":"Enhancing the robustness of visual object tracking via style transfer","volume":"70","author":"Amirkhani","year":"2022","journal-title":"Comput. Mater. Continua"},{"key":"10.1016\/j.bspc.2022.104536_b13","doi-asserted-by":"crossref","unstructured":"M. Havaei, N. Guizard, N. Chapados, Hemis: Hetero-modal image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016.","DOI":"10.1007\/978-3-319-46723-8_54"},{"key":"10.1016\/j.bspc.2022.104536_b14","doi-asserted-by":"crossref","unstructured":"T. Varsavsky, Z. Eaton-Rosen, C. Sudre, PIMMS: permutation invariant multi-modal segmentation, in: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, pp. 201\u2013209.","DOI":"10.1007\/978-3-030-00889-5_23"},{"issue":"3","key":"10.1016\/j.bspc.2022.104536_b15","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1109\/TMI.2017.2764326","article-title":"Multimodal MR synthesis via modality-invariant latent representation","volume":"37","author":"Chartsias","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2022.104536_b16","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.neuroimage.2017.04.041","article-title":"VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images","volume":"170","author":"Chen","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.bspc.2022.104536_b17","doi-asserted-by":"crossref","unstructured":"F. Isensee, P. Kickingereder, W. Wick, Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge, in: International MICCAI Brainlesion Workshop, 2017, pp. 287\u2013297.","DOI":"10.1007\/978-3-319-75238-9_25"},{"key":"10.1016\/j.bspc.2022.104536_b18","doi-asserted-by":"crossref","unstructured":"G. Wang, W. Li, S. Ourselin, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, in: International MICCAI Brainlesion Workshop, 2017, pp. 178\u2013190.","DOI":"10.1007\/978-3-319-75238-9_16"},{"issue":"5","key":"10.1016\/j.bspc.2022.104536_b19","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1109\/TMI.2018.2878669","article-title":"HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation","volume":"38","author":"Dolz","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.bspc.2022.104536_b20","article-title":"A review: Deep learning for medical image segmentation using multi-modality fusion","volume":"3","author":"Zhou","year":"2019","journal-title":"Array"},{"issue":"5","key":"10.1016\/j.bspc.2022.104536_b21","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.1002\/jmri.25873","article-title":"Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study","volume":"47","author":"Vidic","year":"2018","journal-title":"J. Magn. Reson. Imaging"},{"issue":"10","key":"10.1016\/j.bspc.2022.104536_b22","doi-asserted-by":"crossref","first-page":"5162","DOI":"10.1002\/mp.12453","article-title":"A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets","volume":"44","author":"Antropova","year":"2017","journal-title":"Med. Phys."},{"issue":"21","key":"10.1016\/j.bspc.2022.104536_b23","doi-asserted-by":"crossref","first-page":"15555","DOI":"10.1007\/s11042-019-7479-6","article-title":"Detection of breast cancer via deep convolution neural networks using MRI images","volume":"79","author":"Yurttakal","year":"2020","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.bspc.2022.104536_b24","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.patrec.2021.01.023","article-title":"DAE-CNN: exploiting and disentangling contrast agent effects for breast lesions classification in DCE-MRI","volume":"145","author":"Gravina","year":"2021","journal-title":"Pattern Recogn. Lett."},{"issue":"17","key":"10.1016\/j.bspc.2022.104536_b25","doi-asserted-by":"crossref","first-page":"26237","DOI":"10.1007\/s11042-021-10919-8","article-title":"DCE-mri interpolation using learned transformations for breast lesions classification","volume":"20","author":"Wang","year":"2021","journal-title":"Multimedia Tools Appl."},{"issue":"3","key":"10.1016\/j.bspc.2022.104536_b26","doi-asserted-by":"crossref","first-page":"52","DOI":"10.3390\/computers8030052","article-title":"MRI breast tumor segmentation using different encoder and decoder CNN architectures","volume":"8","author":"EI Adoui","year":"2019","journal-title":"Computers"},{"key":"10.1016\/j.bspc.2022.104536_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijleo.2019.163947","article-title":"Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima","volume":"205","author":"Polinati","year":"2020","journal-title":"Optik"},{"key":"10.1016\/j.bspc.2022.104536_b28","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.bspc.2018.08.017","article-title":"MRI and PET\/SPECT image fusion at feature level using ant colony based segmentation","volume":"47","author":"Shahdoosti","year":"2019","journal-title":"Biomed. Signal Process. Control."},{"issue":"11","key":"10.1016\/j.bspc.2022.104536_b29","doi-asserted-by":"crossref","first-page":"2622","DOI":"10.1109\/TBME.2018.2811243","article-title":"Tensor sparse representation for 3-D medical image fusion using weighted average rule","volume":"65","author":"Yin","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2022.104536_b30","article-title":"Multimodal hand gesture recognition combining temporal and pose information based on CNN descriptors and histogram of cumulative magnitudes","volume":"71","author":"Cardenas","year":"2020","journal-title":"J. Visual Commun. Image Represent."},{"key":"10.1016\/j.bspc.2022.104536_b31","doi-asserted-by":"crossref","unstructured":"R. Mokni, H. Drira, M. Kherallah, Fusing multi-techniques based on LDA-CCA and their application in palmprint identification system, in: 2017 IEEE\/ACS 14th International Conference on Computer Systems and Applications (AICCSA)., 2017, pp. 350\u2013357.","DOI":"10.1109\/AICCSA.2017.167"},{"issue":"1","key":"10.1016\/j.bspc.2022.104536_b32","first-page":"1","article-title":"A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI","volume":"10","author":"Hu","year":"2020","journal-title":"Sci. Rep."},{"issue":"6","key":"10.1016\/j.bspc.2022.104536_b33","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1097\/RLI.0000000000000544","article-title":"Artificial intelligence\u2013based classification of breast lesions imaged with a multiparametric breast mri protocol with ultrafast DCE-MRI, T2, and DWI","volume":"54","author":"Dalmis","year":"2019","journal-title":"Invest. Radiol."},{"issue":"11","key":"10.1016\/j.bspc.2022.104536_b34","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0187501","article-title":"Using quantitative features extracted from T2-weighted MRI to improve breast MRI computer-aided diagnosis (CAD)","volume":"12","author":"Gallego-Ortiz","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.bspc.2022.104536_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103326","article-title":"A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images","volume":"72","author":"Barshooi","year":"2022","journal-title":"Biomed. Signal Process. Control."},{"key":"10.1016\/j.bspc.2022.104536_b36","first-page":"1","article-title":"Rib segmentation algorithm for X-ray image based on unpaired sample augmentation and multi-scale network","author":"Wang","year":"2021","journal-title":"Neural Comput. Appl."},{"issue":"1","key":"10.1016\/j.bspc.2022.104536_b37","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1038\/s42256-019-0137-x","article-title":"Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nature Machine Intelligence","volume":"2","author":"Lee","year":"2020","journal-title":"Nat. Machine Intell."},{"key":"10.1016\/j.bspc.2022.104536_b38","doi-asserted-by":"crossref","unstructured":"J. Zhu, T. Park, P. Isola, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223\u20132232.","DOI":"10.1109\/ICCV.2017.244"},{"key":"10.1016\/j.bspc.2022.104536_b39","doi-asserted-by":"crossref","unstructured":"J. Dolz, C. Desrosiers, I.B. Ayed, IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet, in: International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging, 2018, pp. 130\u2013143.","DOI":"10.1007\/978-3-030-13736-6_11"},{"issue":"4","key":"10.1016\/j.bspc.2022.104536_b40","doi-asserted-by":"crossref","first-page":"98","DOI":"10.3390\/computers9040098","article-title":"FuseVis: interpreting neural networks for image fusion using per-pixel saliency visualization","volume":"9","author":"Kumar","year":"2020","journal-title":"Computers"},{"key":"10.1016\/j.bspc.2022.104536_b41","doi-asserted-by":"crossref","unstructured":"Y. Liu, X. Chen, J. Cheng, A medical image fusion method based on convolutional neural networks, in: 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1\u20137.","DOI":"10.23919\/ICIF.2017.8009769"},{"key":"10.1016\/j.bspc.2022.104536_b42","doi-asserted-by":"crossref","unstructured":"T. Lan, Z. Xiao, Y. Li, Multimodal medical image fusion using wavelet transform and human vision system, in: 2014 International Conference on Audio, Language and Image Processing, 2014, pp. 491\u2013495.","DOI":"10.1109\/ICALIP.2014.7009842"},{"key":"10.1016\/j.bspc.2022.104536_b43","doi-asserted-by":"crossref","first-page":"160708","DOI":"10.1109\/ACCESS.2021.3132050","article-title":"MM-BiFPN: Multi-modality fusion network with bi-FPN for MRI brain tumor segmentation","volume":"9","author":"Syazwany","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2022.104536_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103758","article-title":"Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images","volume":"121","author":"Naser","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2022.104536_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2019.103345","article-title":"Brain tumor classification using deep CNN features via transfer learning","volume":"111","author":"Deepak","year":"2019","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.bspc.2022.104536_b46","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.mri.2020.03.001","article-title":"A knowledge-driven feature learning and integration method for breast cancer diagnosis on multi-sequence MRI","volume":"69","author":"Feng","year":"2020","journal-title":"Mag. Reson. Imaging"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809422009909?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809422009909?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T01:30:55Z","timestamp":1716859855000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809422009909"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":46,"alternative-id":["S1746809422009909"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2022.104536","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Feature generation and multi-sequence fusion based deep convolutional network for breast tumor diagnosis with missing MR sequences","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2022.104536","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104536"}}