{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:49:24Z","timestamp":1726408164869},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.bspc.2022.103748","type":"journal-article","created":{"date-parts":[[2022,5,16]],"date-time":"2022-05-16T23:18:37Z","timestamp":1652743117000},"page":"103748","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning"],"prefix":"10.1016","volume":"77","author":[{"given":"Somasundaram","family":"Naveena","sequence":"first","affiliation":[]},{"given":"Ayyasamy","family":"Bharathi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.bspc.2022.103748_b0005","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s41666-019-00059-y","article-title":"Blood glucose prediction with variance estimation using recurrent neural networks","volume":"4","author":"Martinsson","year":"2020","journal-title":"J. Healthc. Informat. Res."},{"issue":"11","key":"10.1016\/j.bspc.2022.103748_b0010","doi-asserted-by":"crossref","first-page":"3101","DOI":"10.1109\/TBME.2020.2975959","article-title":"Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models","volume":"67","author":"Jinyu Xie; Qian Wang","year":"2020","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.bspc.2022.103748_b0015","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.neucom.2019.10.003","article-title":"Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning","volume":"378","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.bspc.2022.103748_b0020","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1007\/s41666-020-00068-2","article-title":"Dilated recurrent neural networks for glucose forecasting in type 1 diabetes","volume":"4","author":"Zhu","year":"2020","journal-title":"J. Healthc. Inform. Res."},{"key":"10.1016\/j.bspc.2022.103748_b0025","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1016\/j.procs.2020.03.065","article-title":"Diabetes diagnostic prediction using vector support machines","volume":"170","author":"Viloria","year":"2020","journal-title":"Proc. Comput. Sci."},{"issue":"2","key":"10.1016\/j.bspc.2022.103748_b0030","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1109\/JBHI.2019.2931842","article-title":"GluNet: a deep learning framework for accurate glucose forecasting","volume":"24","author":"Li","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.bspc.2022.103748_b0035","doi-asserted-by":"crossref","first-page":"217908","DOI":"10.1109\/ACCESS.2020.3041355","article-title":"Blood glucose prediction with VMD and LSTM optimized by improved particle swarm optimization","volume":"8","author":"Wang","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2022.103748_b0040","doi-asserted-by":"crossref","unstructured":"Aleksandr Zaitcev; Mohammad R. Eissa; Zheng Hui; Tim Good; Jackie Elliott; Mohammed Benaissa, \u201cA Deep Neural Network Application for Improved Prediction of HbA1c in Type 1 Diabetes\u201d, IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2932 - 2941, October 2020.","DOI":"10.1109\/JBHI.2020.2967546"},{"issue":"5","key":"10.1016\/j.bspc.2022.103748_b0045","doi-asserted-by":"crossref","first-page":"E992","DOI":"10.1152\/ajpendo.00304.2001","article-title":"Partitioning glucose distribution\/transport, disposal, and endogenous production during ivgtt","volume":"282","author":"Hovorka","year":"2002","journal-title":"Am. J. Physiol. Endocrinol. Metabol."},{"issue":"2","key":"10.1016\/j.bspc.2022.103748_b0050","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1109\/TBME.2008.2005937","article-title":"Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling","volume":"56","author":"Gani","year":"2009","journal-title":"Biomed. Eng. IEEE Trans."},{"issue":"4","key":"10.1016\/j.bspc.2022.103748_b0055","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1089\/dia.2008.0065","article-title":"Estimation of future glucose concentrations with subject-specific recursive linear models","volume":"11","author":"Eren-Oruklu","year":"2009","journal-title":"Diabetes Technol. Ther."},{"issue":"5","key":"10.1016\/j.bspc.2022.103748_b0060","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1109\/TBME.2006.889774","article-title":"Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series","volume":"54","author":"Sparacino","year":"2007","journal-title":"Biomed. Eng. IEEE Trans."},{"issue":"2","key":"10.1016\/j.bspc.2022.103748_b0065","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1177\/1932296814524080","article-title":"Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake an extended kalman filter approach","volume":"8","author":"Wang","year":"2014","journal-title":"J. Diabetes Sci. Technol."},{"issue":"6","key":"10.1016\/j.bspc.2022.103748_b0070","doi-asserted-by":"crossref","first-page":"1550","DOI":"10.1109\/TBME.2012.2188893","article-title":"Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration","volume":"59","author":"Zecchin","year":"2012","journal-title":"Biomed. Eng. IEEE Trans."},{"key":"10.1016\/j.bspc.2022.103748_b0075","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3389\/fams.2017.00014","article-title":"A deep learning approach to diabetic blood glucose prediction","volume":"3","author":"Mhaskar","year":"2017","journal-title":"Front. Appl. Math. Stat."},{"issue":"2","key":"10.1016\/j.bspc.2022.103748_b0080","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1089\/dia.2010.0151","article-title":"A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms","volume":"13","author":"Facchinetti","year":"2011","journal-title":"Diabetes Technol. Ther."},{"issue":"5","key":"10.1016\/j.bspc.2022.103748_b0085","doi-asserted-by":"crossref","first-page":"1214","DOI":"10.1177\/193229681000400522","article-title":"Modeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucose","volume":"4","author":"Percival","year":"2010","journal-title":"J. Diabetes Sci. Technol."},{"key":"10.1016\/j.bspc.2022.103748_b0090","doi-asserted-by":"crossref","first-page":"69311","DOI":"10.1109\/ACCESS.2019.2919184","article-title":"A multi-patient data driven approach to blood glucose prediction","volume":"7","author":"Aliberti","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.bspc.2022.103748_b0095","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1177\/1932296816654161","article-title":"How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to cgm data? a proofof- concept study","volume":"10","author":"Zecchin","year":"2016","journal-title":"J. Diabetes Sci. Technol."},{"issue":"3","key":"10.1016\/j.bspc.2022.103748_b0100","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1109\/JBHI.2013.2253325","article-title":"Adaptive calibration algorithm for plasma glucose estimation in continuous glucose monitoring","volume":"17","author":"Barcelo-Rico","year":"2013","journal-title":"IEEE J. Biomed. Health. Inf."},{"key":"10.1016\/j.bspc.2022.103748_b0105","doi-asserted-by":"crossref","unstructured":"A. Facchinetti Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges Sensors 16 12 2093.","DOI":"10.3390\/s16122093"},{"issue":"6","key":"10.1016\/j.bspc.2022.103748_b0110","doi-asserted-by":"crossref","first-page":"2833","DOI":"10.1002\/cnm.2833","article-title":"A review of personalized blood glucose prediction strategies for T1DM patients","volume":"33","author":"Oviedo","year":"2017","journal-title":"Int. J. Numer. Methods Biomed. Eng."},{"issue":"4","key":"10.1016\/j.bspc.2022.103748_b0115","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1089\/dia.2008.0065","article-title":"Estimation of future glucose concentrations with subject-specific recursive linear models","volume":"11","author":"Eren-Oruklu","year":"2009","journal-title":"Diabetes Technol. Therap."},{"issue":"6","key":"10.1016\/j.bspc.2022.103748_b0120","doi-asserted-by":"crossref","first-page":"1550","DOI":"10.1109\/TBME.2012.2188893","article-title":"Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration","volume":"59","author":"Zecchin","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"10.1016\/j.bspc.2022.103748_b0125","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1177\/193229681200600317","article-title":"Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus","volume":"6","author":"Zhao","year":"2012","journal-title":"J. Diabet. Sci. Technol."},{"key":"10.1016\/j.bspc.2022.103748_b0130","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.knosys.2015.07.006","article-title":"Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm","volume":"89","author":"Mirjalili","year":"2015","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.bspc.2022.103748_b0135","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compstruc.2016.03.001","article-title":"A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm","volume":"169","author":"Askarzadeh","year":"2016","journal-title":"Comput. Struct."},{"key":"10.1016\/j.bspc.2022.103748_b0140","series-title":"2020 3rd International Conference on Intelligent Sustainable Systems (ICISS)","first-page":"498","article-title":"Machine Learning based Diabetes Prediction using Decision Tree J48","author":"Posonia","year":"2020"},{"key":"10.1016\/j.bspc.2022.103748_b0145","series-title":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","first-page":"1","article-title":"Diabetes data analysis via gaussian membership functions with deep neural networks","author":"G\u00fccen","year":"2019"},{"key":"10.1016\/j.bspc.2022.103748_b0150","doi-asserted-by":"crossref","unstructured":"N. Mohan and V. Jain, \u201cPerformance Analysis of Support Vector Machine in Diabetes Prediction,\u201d 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2020, pp. 1-3, 2020.","DOI":"10.1109\/ICECA49313.2020.9297411"},{"key":"10.1016\/j.bspc.2022.103748_b0155","series-title":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology (ICBCB)","first-page":"50","article-title":"Clu-RNN: A New RNN Based Approach to Diabetic Blood Glucose Prediction","author":"Dong","year":"2019"},{"key":"10.1016\/j.bspc.2022.103748_b0160","doi-asserted-by":"crossref","first-page":"217908","DOI":"10.1109\/ACCESS.2020.3041355","article-title":"Blood glucose prediction with VMD and LSTM optimized by improved particle swarm optimization","volume":"8","author":"Wang","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2022.103748_b0165","doi-asserted-by":"crossref","unstructured":"X. Chen, J. Tuo and Y. Wang, \u201cA Prediction Method for Blood Glucose Based on Grey Wolf optimization Evolving Kernel Extreme Learning Machine,\u201d 2019 Chinese Control Conference (CCC), 2019, pp. 3000-3005, 2019.","DOI":"10.23919\/ChiCC.2019.8866210"},{"key":"10.1016\/j.bspc.2022.103748_b0170","first-page":"40","article-title":"Deep convolutional neural networks: structure, feature extraction and training","volume":"20","author":"Namat\u0113vs","year":"2017","journal-title":"Inform. Technol. Manage. Sci."},{"key":"10.1016\/j.bspc.2022.103748_b0175","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.asoc.2014.09.032","article-title":"AGFS: adaptive genetic fuzzy system for medical data classification","volume":"25","author":"Dennis","year":"2014","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.bspc.2022.103748_b0180","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1002\/ima.22087","article-title":"Threshold prediction for segmenting tumour from brain MRI scans","volume":"24","author":"Marsaline Beno","year":"2014","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"10.1016\/j.bspc.2022.103748_b0185","doi-asserted-by":"crossref","unstructured":"S. M. Swamy, B. R. Rajakumar and I. R. Valarmathi, \u201cDesign of Hybrid Wind and Photovoltaic Power System using Opposition-based Genetic Algorithm with Cauchy Mutation\u201d, IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013), Chennai, India, Dec. 2013.","DOI":"10.1049\/ic.2013.0361"},{"key":"10.1016\/j.bspc.2022.103748_b0190","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.jneumeth.2019.05.006","article-title":"A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer's Disease","volume":"323","author":"Li","year":"2019","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.bspc.2022.103748_b0195","unstructured":"https:\/\/datahub.io\/machine-learning\/diabetes."},{"key":"10.1016\/j.bspc.2022.103748_b0200","unstructured":"https:\/\/scikit-learn.org\/stable\/modules\/generated\/sklearn.datasets.load_diabetes.html."},{"key":"10.1016\/j.bspc.2022.103748_b0205","unstructured":"https:\/\/medium.com\/analytics-vidhya\/analyzing-pima-indian-diabetes-dataset-36d02a8a10e5."},{"key":"10.1016\/j.bspc.2022.103748_b0210","unstructured":"Mantripragada Yaswanth Bhanu Murthy, Anne Koteswararao & Melingi Sunil Babu \u201cAdaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor diagnosis,\u201d 2021."},{"key":"10.1016\/j.bspc.2022.103748_b0215","unstructured":"Subramaniam Seshan, Ninad Nagrale, Ranjit Ambad, Shailesh Nagpure\u201cTherapeutic Potential Of Yoga Practices In Management Of Diabetes,\u201dEuropean Journal of Molecular & Clinical Medicine, Volume 08, Issue 01, 2021."},{"issue":"12","key":"10.1016\/j.bspc.2022.103748_b0220","doi-asserted-by":"crossref","first-page":"7165","DOI":"10.1007\/s00521-020-05483-5","article-title":"An intelligent feature selection approach based on moth flame optimization for medical diagnosis","volume":"33","author":"Abu Khurmaa","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.bspc.2022.103748_b0225","doi-asserted-by":"crossref","unstructured":"Abu Khurma, Ruba, Ibrahim Aljarah, Ahmad Sharieh, Mohamed Abd Elaziz, Robertas Dama\u0161evi\u010dius, and Tomas Krilavi\u010dius. \u201cA Review of the Modification Strategies of the Nature Inspired Algorithms for Feature Selection Problem\u201d Mathematics, Volume 10, Issue no. 3: 464. 2022. https:\/\/doi.org\/10.3390\/math10030464.","DOI":"10.3390\/math10030464"},{"key":"10.1016\/j.bspc.2022.103748_b0230","first-page":"353","article-title":"Probabilistic principal component analysis (PPCA) based dimensionality reduction and deep learning for cancer classification","volume":"1172","author":"Menaga","year":"2020","journal-title":"Intell. Comput. Appl."},{"key":"10.1016\/j.bspc.2022.103748_b0235","doi-asserted-by":"crossref","unstructured":"S. Malipatil A. Gour Vikas Maheshwari\u201cFault Tolerant Reversible Full Adder Design Using Gate Diffusion Input,\u201d2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) 2020 120 123.","DOI":"10.1109\/ICSTCEE49637.2020.9276774"},{"key":"10.1016\/j.bspc.2022.103748_b0240","unstructured":"Soham Samajpaty \u201cA Comparative Study Of COVID19 vaccine Technology,\u201d Ac\u043f\u0438pa\u043d\u0442, Volume 2, Pages 164-167, 2021."}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809422002701?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809422002701?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:59:06Z","timestamp":1681603146000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809422002701"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":48,"alternative-id":["S1746809422002701"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2022.103748","relation":{},"ISSN":["1746-8094"],"issn-type":[{"value":"1746-8094","type":"print"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2022.103748","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103748"}}