{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T08:10:39Z","timestamp":1744272639660,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Biomedical Signal Processing and Control"],"published-print":{"date-parts":[[2022,2]]},"DOI":"10.1016\/j.bspc.2021.103370","type":"journal-article","created":{"date-parts":[[2021,11,23]],"date-time":"2021-11-23T10:41:08Z","timestamp":1637664068000},"page":"103370","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"PB","title":["A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders"],"prefix":"10.1016","volume":"72","author":[{"given":"Yu","family":"Lei","sequence":"first","affiliation":[]},{"given":"Abdelkader Nasreddine","family":"Belkacem","sequence":"additional","affiliation":[]},{"given":"Xiaotian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Sha","family":"Sha","sequence":"additional","affiliation":[]},{"given":"Changming","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.bspc.2021.103370_b0005","unstructured":"World Health Organization. (n.d.). https:\/\/www.who.int\/en\/news-room\/fact-sheets\/detail\/depression. Retrieved from http:\/\/www.who.int\/news-room\/fact-sheets\/detail\/depression."},{"key":"10.1016\/j.bspc.2021.103370_b0010","article-title":"The Global Burden of Disease: 2004 Update","author":"Mathers","year":"2008","journal-title":"World Health Organization"},{"key":"10.1016\/j.bspc.2021.103370_b0015","article-title":"Major depressive episode: Unipolar and bipolar II","author":"Cassano","year":"1992","journal-title":"L\u2019Enc\u00e9phale: Revue de Psychiatrie Clinique Biologique et Th\u00e9rapeutique"},{"key":"10.1016\/j.bspc.2021.103370_b0020","doi-asserted-by":"crossref","first-page":"S12","DOI":"10.1016\/S0165-0327(14)70004-7","article-title":"Differential diagnosis of bipolar disorder and major depressive disorder","volume":"169","author":"Hirschfeld","year":"2014","journal-title":"J. Affect. Disord."},{"key":"10.1016\/j.bspc.2021.103370_b0025","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1016\/j.jad.2015.11.034","article-title":"Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses","volume":"190","author":"Isomura","year":"2016","journal-title":"J. Affect. Disord."},{"issue":"11","key":"10.1016\/j.bspc.2021.103370_b0030","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.1001\/jamapsychiatry.2014.1100","article-title":"Brain morphometric biomarkers distinguishing unipolar and bipolar depression: a voxel-based morphometry\u2013pattern classification approach","volume":"71","author":"Redlich","year":"2014","journal-title":"JAMA Psychiatry"},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0035","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1016\/j.clinph.2019.08.010","article-title":"Functional EEG connectivity is a neuromarker for adult attention deficit hyperactivity disorder symptoms","volume":"131","author":"Kiiski","year":"2020","journal-title":"Clin. Neurophysiol."},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0040","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/s40810-016-0017-0","article-title":"Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults","volume":"2","author":"Johannesen","year":"2016","journal-title":"Neuropsychiatric Electrophysiol."},{"issue":"8","key":"10.1016\/j.bspc.2021.103370_b0045","first-page":"1045","article-title":"Analysis of EEG data and prediction of schizophrenic characteristics based on EEG signals","volume":"7","author":"Saravanan","year":"2020","journal-title":"J. Crit. Rev."},{"issue":"6","key":"10.1016\/j.bspc.2021.103370_b0050","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.3390\/s17061385","article-title":"Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns","volume":"17","author":"Liao","year":"2017","journal-title":"Sensors"},{"issue":"12","key":"10.1016\/j.bspc.2021.103370_b0055","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s10916-015-0345-9","article-title":"Mild depression detection of college students: an EEG-based solution with free viewing tasks","volume":"39","author":"Li","year":"2015","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.bspc.2021.103370_b0060","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.nicl.2013.03.007","article-title":"Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis","volume":"2","author":"Kim","year":"2013","journal-title":"NeuroImage: Clinical"},{"key":"10.1016\/j.bspc.2021.103370_b0065","doi-asserted-by":"crossref","first-page":"40379","DOI":"10.1109\/ACCESS.2018.2854555","article-title":"Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features","volume":"6","author":"Alimardani","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.103370_b0070","unstructured":"H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, ResNeSt: Split-Attention Networks. (2020)."},{"key":"10.1016\/j.bspc.2021.103370_b0075","article-title":"Yolov3: An incremental improvement","author":"Redmon","year":"2018","journal-title":"ArXiv Preprint"},{"key":"10.1016\/j.bspc.2021.103370_b0080","doi-asserted-by":"crossref","first-page":"102805","DOI":"10.1016\/j.cviu.2019.102805","article-title":"A survey on deep learning based face recognition","volume":"189","author":"Guo","year":"2019","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.bspc.2021.103370_b0085","doi-asserted-by":"crossref","first-page":"19143","DOI":"10.1109\/ACCESS.2019.2896880","article-title":"Speech recognition using deep neural networks: A systematic review","volume":"7","author":"Nassif","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.bspc.2021.103370_b0090","doi-asserted-by":"crossref","first-page":"056013","DOI":"10.1088\/1741-2552\/aace8c","article-title":"EEGNet: a compact convolutional neural network for EEG-based brain\u2013computer interfaces","volume":"15","author":"Lawhern","year":"2018","journal-title":"J. Neural Eng."},{"issue":"9","key":"10.1016\/j.bspc.2021.103370_b0095","doi-asserted-by":"crossref","first-page":"2755","DOI":"10.1109\/TNNLS.2018.2886414","article-title":"EEG-based spatio \u2013 temporal convolutional neural network for driver fatigue evaluation","volume":"30","author":"Gao","year":"2019","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.bspc.2021.103370_b0100","doi-asserted-by":"crossref","unstructured":"B. Ay, O. Yildirim, Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43 (2019) 205.","DOI":"10.1007\/s10916-019-1345-y"},{"key":"10.1016\/j.bspc.2021.103370_b0105","doi-asserted-by":"crossref","first-page":"30332","DOI":"10.1109\/ACCESS.2020.2971656","article-title":"HybridEEGNet: A convolutional neural network for EEG feature learning and depression discrimination","volume":"8","author":"Wan","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.bspc.2021.103370_b0110","doi-asserted-by":"crossref","unstructured":"C. Uyulan, T.T. Erg\u00fczel, H. Unubol, M. Cebi, G.H. Sayar, M. Nezhadasad, N. Tarhan, Major depressive disorder classification based on different convolutional neural network models: deep learning approach. Clin. EEG Neurosci., (14) (2020). https:\/\/doi.org\/10.1177\/1550059420916634.","DOI":"10.1177\/1550059420916634"},{"key":"10.1016\/j.bspc.2021.103370_b0115","article-title":"Learning representations from EEG with deep recurrent-convolutional neural networks","author":"Bashivan","year":"2015","journal-title":"ArXiv Preprint"},{"issue":"11","key":"10.1016\/j.bspc.2021.103370_b0120","doi-asserted-by":"crossref","first-page":"5619","DOI":"10.1109\/TNNLS.2018.2789927","article-title":"Learning temporal information for brain-computer interface using convolutional neural networks","volume":"29","author":"Sakhavi","year":"2018","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.bspc.2021.103370_b0125","unstructured":"H.I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, et al. InceptionTime: Finding AlexNet for Time Series Classification. Retrieved from http:\/\/arxiv.org\/abs\/1909.04939 (2019)."},{"key":"10.1016\/j.bspc.2021.103370_b0130","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7132","article-title":"Squeeze-and-excitation networks Jie","author":"Hu","year":"2018"},{"key":"10.1016\/j.bspc.2021.103370_b0135","unstructured":"A.P. Association, Diagnostic and statistical manual of mental disorders (DSM-5\u00ae). American Psychiatric Pub (2013)."},{"issue":"2","key":"10.1016\/j.bspc.2021.103370_b0140","doi-asserted-by":"crossref","first-page":"108","DOI":"10.3390\/info11020108","article-title":"Fastai: A layered API for deep learning","volume":"11","author":"Howard","year":"2020","journal-title":"Information"},{"key":"10.1016\/j.bspc.2021.103370_b0145","doi-asserted-by":"crossref","unstructured":"L.N. Smith, (2017). Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 464\u2013472). IEEE.","DOI":"10.1109\/WACV.2017.58"},{"key":"10.1016\/j.bspc.2021.103370_b0150","unstructured":"I. Loshchilov, F. Hutter, (n.d.). Fixing weight decay regularization in Adam. ArXiv:1711.05101."},{"key":"10.1016\/j.bspc.2021.103370_b0155","unstructured":"H. Zhang, M. Cisse, Y.N., Dauphin, D. Lopez-Paz, mixup: Beyond Empirical Risk Minimization, 1\u201313 (2017).. Retrieved from http:\/\/arxiv.org\/abs\/1710.09412."},{"key":"10.1016\/j.bspc.2021.103370_b0160","unstructured":"J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, Understanding Neural Networks Through Deep Visualization. (2015). Retrieved from http:\/\/arxiv.org\/abs\/1506.06579."},{"key":"10.1016\/j.bspc.2021.103370_b0165","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.bspc.2016.07.006","article-title":"Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)","volume":"31","author":"Mumtaz","year":"2017","journal-title":"Biomed. Signal Process. Control"},{"issue":"5","key":"10.1016\/j.bspc.2021.103370_b0170","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1001\/archpsyc.65.5.521","article-title":"Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects","volume":"65","author":"Hasler","year":"2008","journal-title":"Arch. Gen. Psychiatry"},{"issue":"5","key":"10.1016\/j.bspc.2021.103370_b0175","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1001\/archpsyc.65.5.532","article-title":"Hypofunction of right temporoparietal cortex during emotional arousal in depression","volume":"65","author":"Moratti","year":"2008","journal-title":"Arch. Gen. Psychiatry"},{"issue":"5","key":"10.1016\/j.bspc.2021.103370_b0180","first-page":"2984","article-title":"Cortical thickness of functionally defined visual areas in schizophrenia and bipolar disorder","volume":"27","author":"Reavis","year":"2017","journal-title":"Cereb. Cortex"},{"issue":"2","key":"10.1016\/j.bspc.2021.103370_b0185","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1176\/appi.ajp.2010.09121718","article-title":"Aberrant brain activation during a working memory task in psychotic major depression","volume":"168","author":"Garrett","year":"2011","journal-title":"Am. J. Psychiatry"},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0190","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.pnpbp.2012.01.011","article-title":"Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study","volume":"37","author":"Guo","year":"2012","journal-title":"Prog. Neuro-Psychopharmacol. Biol. Psychiatry"},{"issue":"2","key":"10.1016\/j.bspc.2021.103370_b0195","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.neures.2010.06.013","article-title":"Depression and the hyperactive right-hemisphere","volume":"68","author":"Hecht","year":"2010","journal-title":"Neurosci. Res."},{"key":"10.1016\/j.bspc.2021.103370_b0200","article-title":"Asymmetry in cortical thickness and subcortical volume in treatment-na\u00efve major depressive disorder","volume":"21","author":"Zuo","year":"2019","journal-title":"NeuroImage: Clin."},{"issue":"3","key":"10.1016\/j.bspc.2021.103370_b0205","doi-asserted-by":"crossref","first-page":"1450035","DOI":"10.1142\/S0219519414500353","article-title":"Depression diagnosis support system based on EEG signal entropies","volume":"14","author":"Faust","year":"2014","journal-title":"J. Mech. Med. Biol."},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0210","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1186\/s40537-019-0197-0","article-title":"A survey on image data augmentation for deep learning","volume":"6","author":"Shorten","year":"2019","journal-title":"J. Big Data"},{"key":"10.1016\/j.bspc.2021.103370_b0215","doi-asserted-by":"crossref","first-page":"446","DOI":"10.3389\/fnhum.2014.00446","article-title":"Different roles of alpha and beta band oscillations in anticipatory sensorimotor gating","volume":"8","author":"Buchholz","year":"2014","journal-title":"Front. Hum. Neurosci."},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0220","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-018-25267-1","article-title":"Top-down beta oscillatory signaling conveys behavioral context in early visual cortex","volume":"8","author":"Richter","year":"2018","journal-title":"Sci. Rep."},{"issue":"11","key":"10.1016\/j.bspc.2021.103370_b0225","doi-asserted-by":"crossref","first-page":"1556","DOI":"10.1093\/cercor\/bhj091","article-title":"Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study","volume":"16","author":"Senkowski","year":"2006","journal-title":"Cereb. Cortex"},{"issue":"6","key":"10.1016\/j.bspc.2021.103370_b0230","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1093\/schbul\/sbp110","article-title":"Sensory processing in schizophrenia: neither simple nor intact","volume":"35","author":"Javitt","year":"2009","journal-title":"Schizophr. Bull."},{"issue":"12","key":"10.1016\/j.bspc.2021.103370_b0235","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.1176\/appi.ajp.2017.16121379","article-title":"Altered sensory phenomena experienced in bipolar disorder","volume":"174","author":"Parker","year":"2017","journal-title":"Am. J. Psychiatry"},{"issue":"3","key":"10.1016\/j.bspc.2021.103370_b0240","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1007\/s11682-017-9741-8","article-title":"Impaired sensory processing measured by functional MRI in Bipolar disorder manic and depressed mood states","volume":"12","author":"Shaffer","year":"2018","journal-title":"Brain Imag. Behav."},{"issue":"1","key":"10.1016\/j.bspc.2021.103370_b0245","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41398-018-0239-y","article-title":"Gamma oscillations as a biomarker for major depression: an emerging topic","volume":"8","author":"Fitzgerald","year":"2018","journal-title":"Transl. Psychiatry"},{"issue":"7","key":"10.1016\/j.bspc.2021.103370_b0250","doi-asserted-by":"crossref","first-page":"1514","DOI":"10.1016\/j.neuropsychologia.2012.03.004","article-title":"Different patterns of abnormal gamma oscillatory activity in unipolar and bipolar disorder patients during an implicit emotion task","volume":"50","author":"Liu","year":"2012","journal-title":"Neuropsychologia"},{"key":"10.1016\/j.bspc.2021.103370_b0255","doi-asserted-by":"crossref","unstructured":"T.Y. Liu, Y.-S. Chen, T.P. Su, J.C. Hsieh, L.F. Chen, Abnormal early gamma responses to emotional faces differentiate unipolar from bipolar disorder patients. BioMed Res. Int. (2014).","DOI":"10.1155\/2014\/906104"}],"container-title":["Biomedical Signal Processing and Control"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421009678?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1746809421009678?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T23:38:35Z","timestamp":1681601915000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1746809421009678"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2]]},"references-count":51,"alternative-id":["S1746809421009678"],"URL":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103370","relation":{},"ISSN":["1746-8094"],"issn-type":[{"type":"print","value":"1746-8094"}],"subject":[],"published":{"date-parts":[[2022,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders","name":"articletitle","label":"Article Title"},{"value":"Biomedical Signal Processing and Control","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.bspc.2021.103370","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103370"}}